247 lines
No EOL
9.1 KiB
Python
247 lines
No EOL
9.1 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
from transformers.models.llama.modeling_llama import LlamaRMSNorm
|
|
from timm.models.layers import DropPath
|
|
|
|
class Mlp(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_features,
|
|
hidden_features=None,
|
|
out_features=None,
|
|
act_layer=nn.GELU,
|
|
drop=0.0,
|
|
):
|
|
super().__init__()
|
|
out_features = out_features or in_features
|
|
hidden_features = hidden_features or in_features
|
|
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
self.act = act_layer()
|
|
self.fc2 = nn.Linear(hidden_features, out_features)
|
|
self.drop = nn.Dropout(drop)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.act(x)
|
|
x = self.drop(x)
|
|
x = self.fc2(x)
|
|
x = self.drop(x)
|
|
return x
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_heads=8,
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
attn_drop=0.0,
|
|
proj_drop=0.0,
|
|
):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
|
self.scale = qk_scale or head_dim ** -0.5
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
def forward(self, x, mask=None):
|
|
B, N, C = x.shape
|
|
qkv = (
|
|
self.qkv(x)
|
|
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
|
.permute(2, 0, 3, 1, 4)
|
|
)
|
|
q, k, v = (
|
|
qkv[0],
|
|
qkv[1],
|
|
qkv[2],
|
|
) # make torchscript happy (cannot use tensor as tuple)
|
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
if mask is not None:
|
|
if mask.dim() != x.dim():
|
|
expanded_mask = mask[:, None, None, :].expand(B, 1, N, N)
|
|
else:
|
|
expanded_mask = mask
|
|
expanded_mask = expanded_mask.bool()
|
|
attn = attn.masked_fill(~expanded_mask, float("-inf"))
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x, attn
|
|
|
|
|
|
class MoELayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_heads,
|
|
mlp_ratio=4.0,
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
drop=0.0,
|
|
attn_drop=0.0,
|
|
drop_path=0.0,
|
|
act_layer=nn.SiLU,
|
|
norm_layer=LlamaRMSNorm,
|
|
):
|
|
super().__init__()
|
|
self.norm_att = norm_layer(dim)
|
|
self.attn = Attention(
|
|
dim,
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
attn_drop=attn_drop,
|
|
proj_drop=drop,
|
|
)
|
|
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
|
|
# EXPERT CONSTRUCTION
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
|
|
|
|
# Spatial expert
|
|
self.norm_spatial = norm_layer(dim)
|
|
self.mlp_spatial = Mlp(
|
|
in_features=dim,
|
|
hidden_features=mlp_hidden_dim,
|
|
act_layer=act_layer,
|
|
drop=drop,
|
|
)
|
|
|
|
# Temporal expert
|
|
self.norm_temp = norm_layer(dim)
|
|
self.mlp_temp = Mlp(
|
|
in_features=dim,
|
|
hidden_features=mlp_hidden_dim,
|
|
act_layer=act_layer,
|
|
drop=drop,
|
|
)
|
|
|
|
# Vis expert
|
|
self.norm_vis = norm_layer(dim)
|
|
self.mlp_vis = Mlp(
|
|
in_features=dim,
|
|
hidden_features=mlp_hidden_dim,
|
|
act_layer=act_layer,
|
|
drop=drop,
|
|
)
|
|
|
|
# caption expert
|
|
self.norm_cap = norm_layer(dim)
|
|
self.mlp_cap = Mlp(
|
|
in_features=dim,
|
|
hidden_features=mlp_hidden_dim,
|
|
act_layer=act_layer,
|
|
drop=drop,
|
|
)
|
|
|
|
# history expert
|
|
self.norm_hist = norm_layer(dim)
|
|
self.mlp_hist = Mlp(
|
|
in_features=dim,
|
|
hidden_features=mlp_hidden_dim,
|
|
act_layer=act_layer,
|
|
drop=drop,
|
|
)
|
|
|
|
# Fusion expert
|
|
self.norm_fusion = norm_layer(dim)
|
|
self.mlp_fusion = Mlp(
|
|
in_features=dim,
|
|
hidden_features=mlp_hidden_dim,
|
|
act_layer=act_layer,
|
|
drop=drop,
|
|
)
|
|
|
|
# expert_flag:{Only Text : 00 , Only Image : 01, Fusion : 10, Text & Image : 11} (BINARY)
|
|
|
|
# expert_flag:
|
|
# 0:
|
|
|
|
def forward(self, x, special_toks_indices, expert_flag, mask=None):
|
|
x_shortcut, attn = self.attn(self.norm_att(x), mask=mask)
|
|
x = x + self.drop_path(x_shortcut)
|
|
bs, h_dim = x.size(0), x.size(-1)
|
|
device = x.device
|
|
|
|
if expert_flag == 'modalities':
|
|
end_index = special_toks_indices.get('<temporal>', special_toks_indices['<caption>'])
|
|
spatial_feats = x[:, special_toks_indices['<spatial>']: end_index, :]
|
|
spatial_feats = spatial_feats + self.drop_path(self.mlp_spatial(self.norm_spatial(spatial_feats)))
|
|
spatial_index = torch.arange(special_toks_indices['<spatial>'], end_index, device=device)
|
|
spatial_index = spatial_index.unsqueeze(0).unsqueeze(-1)
|
|
spatial_index = spatial_index.repeat(bs, 1, h_dim)
|
|
x = x.scatter(1, spatial_index, spatial_feats)
|
|
# x[:, special_toks_indices['<spatial>']: special_toks_indices['<temporal>'], :] = spatial_feats
|
|
|
|
end_index = special_toks_indices.get('<history>', special_toks_indices['</s>'])
|
|
caption_feats = x[:, special_toks_indices['<caption>']: end_index, :]
|
|
caption_feats = caption_feats + self.drop_path(self.mlp_cap(self.norm_cap(caption_feats)))
|
|
caption_index = torch.arange(special_toks_indices['<caption>'], end_index, device=device)
|
|
caption_index = caption_index.unsqueeze(0).unsqueeze(-1)
|
|
caption_index = caption_index.repeat(bs, 1, h_dim)
|
|
x = x.scatter(1, caption_index, caption_feats)
|
|
|
|
# x[:, special_toks_indices['<caption>']: special_toks_indices['</s>'], :] = caption_feats
|
|
|
|
if '<temporal>' in special_toks_indices:
|
|
temporal_feats = x[:, special_toks_indices['<temporal>']: special_toks_indices['<caption>'], :]
|
|
temporal_feats = temporal_feats + self.drop_path(self.mlp_temp(self.norm_temp(temporal_feats)))
|
|
temporal_index = torch.arange(special_toks_indices['<temporal>'], special_toks_indices['<caption>'], device=device)
|
|
temporal_index = temporal_index.unsqueeze(0).unsqueeze(-1)
|
|
temporal_index = temporal_index.repeat(bs, 1, h_dim)
|
|
x = x.scatter(1, temporal_index, temporal_feats)
|
|
|
|
# x[:, special_toks_indices['<temporal>']: special_toks_indices['<caption>'], :] = temporal_feats
|
|
|
|
vis_feats = x[:, special_toks_indices['<vis>']: special_toks_indices['<caption>'], :]
|
|
vis_feats = vis_feats + self.drop_path(self.mlp_vis(self.norm_vis(vis_feats)))
|
|
vis_index = torch.arange(special_toks_indices['<vis>'], special_toks_indices['<caption>'], device=device)
|
|
vis_index = vis_index.unsqueeze(0).unsqueeze(-1)
|
|
vis_index = vis_index.repeat(bs, 1, h_dim)
|
|
x = x.scatter(1, vis_index, vis_feats)
|
|
|
|
# x[:, special_toks_indices['<vis>']: special_toks_indices['<caption>'], :] = vis_feats
|
|
|
|
if '<history>' in special_toks_indices:
|
|
history_feats = x[:, special_toks_indices['<history>']: special_toks_indices['</s>'], :]
|
|
history_feats = history_feats + self.drop_path(self.mlp_hist(self.norm_hist(history_feats)))
|
|
history_index = torch.arange(special_toks_indices['<history>'], special_toks_indices['</s>'], device=device)
|
|
history_index = history_index.unsqueeze(0).unsqueeze(-1)
|
|
history_index = history_index.repeat(bs, 1, h_dim)
|
|
x = x.scatter(1, history_index, history_feats)
|
|
|
|
elif expert_flag == 'fusion':
|
|
x = x + self.drop_path(self.mlp_fusion(self.norm_fusion(x)))
|
|
|
|
return x, attn
|
|
|
|
# if expert_flag == 2:
|
|
# x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
# elif expert_flag == 0:
|
|
# x = (x[:, -it_split:])
|
|
# x = x + self.drop_path(self.sentence_mlp(self.sentence_norm(x)))
|
|
# elif expert_flag == 1:
|
|
# x = (x[:, :-it_split ])
|
|
# x = x + self.drop_path(self.image_mlp(self.image_norm(x)))
|
|
# elif expert_flag == 3:
|
|
# text, image = (x[:, :it_split], x[:, it_split:],)
|
|
# text = text + self.drop_path(self.sentence_mlp(self.sentence_norm(text)))
|
|
# image = image + self.drop_path(self.image_mlp(self.image_norm(image)))
|
|
# x = torch.cat([text, image], dim=1)
|
|
# elif expert_flag == 4:
|
|
# x = x + self.drop_path(self.generation_mlp(self.generation_norm(x)))
|
|
# return x, attn |