V2Dial/utils/metrcis.py
2025-06-24 08:38:09 +02:00

174 lines
No EOL
6.1 KiB
Python

"""
A Metric observes output of certain model, for example, in form of logits or
scores, and accumulates a particular metric with reference to some provided
targets. In context of VisDial, we use Recall (@ 1, 5, 10), Mean Rank, Mean
Reciprocal Rank (MRR) and Normalized Discounted Cumulative Gain (NDCG).
Each ``Metric`` must atleast implement three methods:
- ``observe``, update accumulated metric with currently observed outputs
and targets.
- ``retrieve`` to return the accumulated metric., an optionally reset
internally accumulated metric (this is commonly done between two epochs
after validation).
- ``reset`` to explicitly reset the internally accumulated metric.
Caveat, if you wish to implement your own class of Metric, make sure you call
``detach`` on output tensors (like logits), else it will cause memory leaks.
"""
import torch
def scores_to_ranks(scores: torch.Tensor):
"""Convert model output scores into ranks."""
batch_size, num_rounds, num_options = scores.size()
scores = scores.view(-1, num_options)
# sort in descending order - largest score gets highest rank
sorted_ranks, ranked_idx = scores.sort(1, descending=True)
# i-th position in ranked_idx specifies which score shall take this
# position but we want i-th position to have rank of score at that
# position, do this conversion
ranks = ranked_idx.clone().fill_(0)
for i in range(ranked_idx.size(0)):
for j in range(num_options):
ranks[i][ranked_idx[i][j]] = j
# convert from 0-99 ranks to 1-100 ranks
ranks += 1
ranks = ranks.view(batch_size, num_rounds, num_options)
return ranks
class SparseGTMetrics(object):
"""
A class to accumulate all metrics with sparse ground truth annotations.
These include Recall (@ 1, 5, 10), Mean Rank and Mean Reciprocal Rank.
"""
def __init__(self):
self._rank_list = []
def observe(
self, predicted_scores: torch.Tensor, target_ranks: torch.Tensor
):
predicted_scores = predicted_scores.detach()
# shape: (batch_size, num_rounds, num_options)
predicted_ranks = scores_to_ranks(predicted_scores)
batch_size, num_rounds, num_options = predicted_ranks.size()
# collapse batch dimension
predicted_ranks = predicted_ranks.view(
batch_size * num_rounds, num_options
)
# shape: (batch_size * num_rounds, )
target_ranks = target_ranks.view(batch_size * num_rounds).long()
# shape: (batch_size * num_rounds, )
predicted_gt_ranks = predicted_ranks[
torch.arange(batch_size * num_rounds), target_ranks
]
self._rank_list.extend(list(predicted_gt_ranks.cpu().numpy()))
def retrieve(self, reset: bool = True):
num_examples = len(self._rank_list)
if num_examples > 0:
# convert to numpy array for easy calculation.
__rank_list = torch.tensor(self._rank_list).float()
metrics = {
"r@1": torch.mean((__rank_list <= 1).float()).item(),
"r@5": torch.mean((__rank_list <= 5).float()).item(),
"r@10": torch.mean((__rank_list <= 10).float()).item(),
"mean": torch.mean(__rank_list).item(),
"mrr": torch.mean(__rank_list.reciprocal()).item(),
}
else:
metrics = {}
if reset:
self.reset()
return metrics
def reset(self):
self._rank_list = []
class NDCG(object):
def __init__(self):
self._ndcg_numerator = 0.0
self._ndcg_denominator = 0.0
def observe(
self, predicted_scores: torch.Tensor, target_relevance: torch.Tensor
):
"""
Observe model output scores and target ground truth relevance and
accumulate NDCG metric.
Parameters
----------
predicted_scores: torch.Tensor
A tensor of shape (batch_size, num_options), because dense
annotations are available for 1 randomly picked round out of 10.
target_relevance: torch.Tensor
A tensor of shape same as predicted scores, indicating ground truth
relevance of each answer option for a particular round.
"""
predicted_scores = predicted_scores.detach()
# shape: (batch_size, 1, num_options)
predicted_scores = predicted_scores.unsqueeze(1)
predicted_ranks = scores_to_ranks(predicted_scores)
# shape: (batch_size, num_options)
predicted_ranks = predicted_ranks.squeeze(1)
batch_size, num_options = predicted_ranks.size()
k = torch.sum(target_relevance != 0, dim=-1)
# shape: (batch_size, num_options)
_, rankings = torch.sort(predicted_ranks, dim=-1)
# Sort relevance in descending order so highest relevance gets top rnk.
_, best_rankings = torch.sort(
target_relevance, dim=-1, descending=True
)
# shape: (batch_size, )
batch_ndcg = []
for batch_index in range(batch_size):
num_relevant = k[batch_index]
dcg = self._dcg(
rankings[batch_index][:num_relevant],
target_relevance[batch_index],
)
best_dcg = self._dcg(
best_rankings[batch_index][:num_relevant],
target_relevance[batch_index],
)
batch_ndcg.append(dcg / best_dcg)
self._ndcg_denominator += batch_size
self._ndcg_numerator += sum(batch_ndcg)
def _dcg(self, rankings: torch.Tensor, relevance: torch.Tensor):
sorted_relevance = relevance[rankings].cpu().float()
discounts = torch.log2(torch.arange(len(rankings)).float() + 2)
return torch.sum(sorted_relevance / discounts, dim=-1)
def retrieve(self, reset: bool = True):
if self._ndcg_denominator > 0:
metrics = {
"ndcg": float(self._ndcg_numerator / self._ndcg_denominator)
}
else:
metrics = {}
if reset:
self.reset()
return metrics
def reset(self):
self._ndcg_numerator = 0.0
self._ndcg_denominator = 0.0