VDGR/main.py

200 lines
6.4 KiB
Python
Raw Normal View History

2023-10-25 15:38:09 +02:00
from utils.init_utils import load_runner, load_dataset, set_random_seed, set_training_steps, initialize_from_env, set_log_file, copy_file_to_log
import torch.distributed as dist
import torch.nn as nn
import torch.multiprocessing as mp
import torch
import os
import sys
import argparse
import pyhocon
import glog as log
import socket
import getpass
try:
from apex.parallel import DistributedDataParallel as DDP
from apex import amp
except ModuleNotFoundError:
print('apex not found')
parser = argparse.ArgumentParser(description='Main script for VD-GR')
parser.add_argument(
'--model',
type=str,
default='vdgr/P1',
help='model name to train or test')
parser.add_argument(
'--mode',
type=str,
default='train',
help='train, eval, predict or debug')
parser.add_argument(
'--wandb_project',
type=str,
default='VD-GR'
)
parser.add_argument(
'--wandb_mode',
type=str,
default='online',
choices=['online', 'offline', 'disabled', 'run', 'dryrun']
)
parser.add_argument(
'--tag',
type=str,
default='K2',
help="Tag to differentiate the different runs"
)
parser.add_argument(
'--eval_dir',
type=str,
default='',
help="Directory of a trained model to evaluate"
)
parser.add_argument('--ssh', action='store_true',
help='whether or not we are executing command via ssh. '
'If set to True, we will not log.info anything to screen and only redirect them to log file')
def main(gpu, config, args):
config['training'] = args.mode == 'train'
config['validating'] = args.mode == 'eval'
config['debugging'] = args.mode == 'debug'
config['predicting'] = args.mode == 'predict'
config['wandb_project'] = args.wandb_project
config['wandb_mode'] = args.wandb_mode
if config['parallel'] and config['dp_type'] != 'dp':
config['rank'] = gpu
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(config['master_port'])
dist.init_process_group(
backend='nccl',
world_size=config['num_gpus'],
rank=gpu
)
config['display'] = gpu == 0
if config['dp_type'] == 'apex':
torch.cuda.set_device(gpu)
else:
config['display'] = True
if config['debugging'] or (config['parallel'] and config['dp_type'] != 'dp'):
config['num_workers'] = 0
else:
config['num_workers'] = 0
# set logs
log_file = os.path.join(config["log_dir"], f'{args.mode}.log')
set_log_file(log_file, file_only=args.ssh)
# print environment info
if config['display']:
log.info('Host: {}, user: {}, CUDA_VISIBLE_DEVICES: {}, cwd: {}'.format(
socket.gethostname(), getpass.getuser(), os.environ.get('CUDA_VISIBLE_DEVICES', ''), os.getcwd()))
log.info('Command line is: {}'.format(' '.join(sys.argv)))
if config['parallel'] and config['dp_type'] != 'dp':
log.info(
f'World_size: {config["num_gpus"]}, cur rank: {config["rank"]}')
log.info(f"Running experiment: {args.model}")
log.info(f"Results saved to {config['log_dir']}")
# initialization
if config['display'] and config['training']:
copy_file_to_log(config['log_dir'])
set_random_seed(config['random_seed'])
device = torch.device(f"cuda:{gpu}")
if config["use_cpu"]:
device = torch.device("cpu")
config['device'] = device
# prepare dataset
dataset, dataset_eval = load_dataset(config)
# set training steps
if not config['validating'] or config['parallel']:
config = set_training_steps(config, len(dataset))
if config['display']:
log.info(pyhocon.HOCONConverter.convert(config, "hocon"))
# load runner
runner = load_runner(config)
# apex
if config['dp_type'] == 'apex':
runner.model, runner.optimizer = amp.initialize(runner.model,
runner.optimizer,
opt_level="O1")
# parallel
if config['parallel']:
if config['dp_type'] == 'dp':
runner.model = nn.DataParallel(runner.model)
runner.model.to(config['device'])
elif config['dp_type'] == 'apex':
runner.model = DDP(runner.model)
elif config['dp_type'] == 'ddp':
torch.cuda.set_device(gpu)
runner.model = runner.model.to(gpu)
runner.model = nn.parallel.DistributedDataParallel(
runner.model,
device_ids=[gpu],
output_device=gpu,
find_unused_parameters=True)
else:
raise ValueError(f'Unrecognized dp_type: {config["dp_type"]}')
if config['training'] or config['debugging']:
runner.load_pretrained_vilbert()
runner.train(dataset, dataset_eval)
else:
if config['loads_start_path']:
runner.load_pretrained_vilbert()
else:
runner.load_ckpt_best()
metrics_results = {}
if config['predicting']:
eval_splits = [config['predict_split']]
else:
eval_splits = ['val']
if config['model_type'] == 'conly' and not config['train_each_round']:
eval_splits.append('test')
for split in eval_splits:
if config['display']:
log.info(f'Results on {split} split of the best epoch')
if dataset_eval is None:
dataset_to_eval = dataset
else:
dataset_to_eval = dataset_eval
dataset_to_eval.split = split
_, metrics_results[split] = runner.evaluate(
dataset_to_eval, eval_visdial=True)
if not config['predicting'] and config['display']:
runner.save_eval_results(split, 'best', metrics_results)
if config['parallel'] and config['dp_type'] != 'dp':
dist.destroy_process_group()
if __name__ == '__main__':
args = parser.parse_args()
# initialization
model_type, model_name = args.model.split('/')
config = initialize_from_env(
model_name, args.mode, args.eval_dir, model_type, tag=args.tag)
if config['num_gpus'] > 1:
config['parallel'] = True
if config['dp_type'] == 'dp':
main(0, config, args)
else:
mp.spawn(main, nprocs=config['num_gpus'], args=(config, args))
else:
config['parallel'] = False
main(0, config, args)