2021 lines
86 KiB
Python
2021 lines
86 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""PyTorch BERT model."""
|
|
|
|
import copy
|
|
import json
|
|
import logging
|
|
import math
|
|
import os
|
|
import shutil
|
|
import tarfile
|
|
import tempfile
|
|
import sys
|
|
from io import open
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import CrossEntropyLoss
|
|
import torch.nn.functional as F
|
|
from torch.nn.utils.weight_norm import weight_norm
|
|
from pytorch_transformers.modeling_bert import BertEmbeddings
|
|
from utils.data_utils import sequence_mask, to_data_list
|
|
import torch_geometric.nn as pyg_nn
|
|
from torch_geometric.data import Data
|
|
from torch_geometric.loader import DataLoader
|
|
from pytorch_pretrained_bert.file_utils import cached_path
|
|
import pdb
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
PRETRAINED_MODEL_ARCHIVE_MAP = {
|
|
"bert-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz",
|
|
"bert-large-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz",
|
|
"bert-base-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz",
|
|
"bert-large-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz",
|
|
"bert-base-multilingual-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz",
|
|
"bert-base-multilingual-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz",
|
|
"bert-base-chinese": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz",
|
|
}
|
|
|
|
def load_tf_weights_in_bert(model, tf_checkpoint_path):
|
|
""" Load tf checkpoints in a pytorch model
|
|
"""
|
|
try:
|
|
import re
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
except ImportError:
|
|
print(
|
|
"Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
|
|
"https://www.tensorflow.org/install/ for installation instructions."
|
|
)
|
|
raise
|
|
tf_path = os.path.abspath(tf_checkpoint_path)
|
|
print("Converting TensorFlow checkpoint from {}".format(tf_path))
|
|
# Load weights from TF model
|
|
init_vars = tf.train.list_variables(tf_path)
|
|
names = []
|
|
arrays = []
|
|
for name, shape in init_vars:
|
|
print("Loading TF weight {} with shape {}".format(name, shape))
|
|
array = tf.train.load_variable(tf_path, name)
|
|
names.append(name)
|
|
arrays.append(array)
|
|
|
|
for name, array in zip(names, arrays):
|
|
name = name.split("/")
|
|
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
|
# which are not required for using pretrained model
|
|
if any(n in ["adam_v", "adam_m"] for n in name):
|
|
print("Skipping {}".format("/".join(name)))
|
|
continue
|
|
pointer = model
|
|
for m_name in name:
|
|
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
|
l = re.split(r"_(\d+)", m_name)
|
|
else:
|
|
l = [m_name]
|
|
if l[0] == "kernel" or l[0] == "gamma":
|
|
pointer = getattr(pointer, "weight")
|
|
elif l[0] == "output_bias" or l[0] == "beta":
|
|
pointer = getattr(pointer, "bias")
|
|
elif l[0] == "output_weights":
|
|
pointer = getattr(pointer, "weight")
|
|
else:
|
|
pointer = getattr(pointer, l[0])
|
|
if len(l) >= 2:
|
|
num = int(l[1])
|
|
pointer = pointer[num]
|
|
if m_name[-11:] == "_embeddings":
|
|
pointer = getattr(pointer, "weight")
|
|
elif m_name == "kernel":
|
|
array = np.transpose(array)
|
|
try:
|
|
assert pointer.shape == array.shape
|
|
except AssertionError as e:
|
|
e.args += (pointer.shape, array.shape)
|
|
raise
|
|
print("Initialize PyTorch weight {}".format(name))
|
|
pointer.data = torch.from_numpy(array)
|
|
return model
|
|
|
|
class GeLU(nn.Module):
|
|
"""Implementation of the gelu activation function.
|
|
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
|
|
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
|
|
Also see https://arxiv.org/abs/1606.08415
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(GeLU, self).__init__()
|
|
|
|
def forward(self, x):
|
|
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
|
|
|
|
|
def gelu(x):
|
|
"""Implementation of the gelu activation function.
|
|
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
|
|
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
|
|
Also see https://arxiv.org/abs/1606.08415
|
|
"""
|
|
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
|
|
|
|
|
def swish(x):
|
|
return x * torch.sigmoid(x)
|
|
|
|
|
|
ACT2FN = {"GeLU": GeLU(), "gelu": gelu,
|
|
"relu": torch.nn.functional.relu, "swish": swish}
|
|
|
|
class BertConfig(object):
|
|
"""Configuration class to store the configuration of a `BertModel`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size_or_config_json_file,
|
|
hidden_size=768,
|
|
num_hidden_layers=12,
|
|
num_attention_heads=12,
|
|
intermediate_size=3072,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=2,
|
|
initializer_range=0.02,
|
|
v_feature_size=2048,
|
|
v_target_size=1601,
|
|
v_hidden_size=768,
|
|
v_num_hidden_layers=3,
|
|
v_num_attention_heads=12,
|
|
v_intermediate_size=3072,
|
|
bi_hidden_size=1024,
|
|
bi_num_attention_heads=16,
|
|
v_attention_probs_dropout_prob=0.1,
|
|
v_hidden_act="gelu",
|
|
v_hidden_dropout_prob=0.1,
|
|
v_initializer_range=0.2,
|
|
v_biattention_id=[0, 1],
|
|
t_biattention_id=[10, 11],
|
|
predict_feature=False,
|
|
fast_mode=False,
|
|
fixed_v_layer=0,
|
|
fixed_t_layer=0,
|
|
in_batch_pairs=False,
|
|
fusion_method="mul",
|
|
intra_gate=False,
|
|
with_coattention=True
|
|
):
|
|
|
|
"""Constructs BertConfig.
|
|
|
|
Args:
|
|
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
|
|
hidden_size: Size of the encoder layers and the pooler layer.
|
|
num_hidden_layers: Number of hidden layers in the Transformer encoder.
|
|
num_attention_heads: Number of attention heads for each attention layer in
|
|
the Transformer encoder.
|
|
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
|
|
layer in the Transformer encoder.
|
|
hidden_act: The non-linear activation function (function or string) in the
|
|
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
|
|
hidden_dropout_prob: The dropout probabilitiy for all fully connected
|
|
layers in the embeddings, encoder, and pooler.
|
|
attention_probs_dropout_prob: The dropout ratio for the attention
|
|
probabilities.
|
|
max_position_embeddings: The maximum sequence length that this model might
|
|
ever be used with. Typically set this to something large just in case
|
|
(e.g., 512 or 1024 or 2048).
|
|
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
|
|
`BertModel`.
|
|
initializer_range: The sttdev of the truncated_normal_initializer for
|
|
initializing all weight matrices.
|
|
"""
|
|
assert len(v_biattention_id) == len(t_biattention_id)
|
|
assert max(v_biattention_id) < v_num_hidden_layers
|
|
assert max(t_biattention_id) < num_hidden_layers
|
|
|
|
if isinstance(vocab_size_or_config_json_file, str) or (
|
|
sys.version_info[0] == 2
|
|
and isinstance(vocab_size_or_config_json_file, unicode)
|
|
):
|
|
with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
|
|
json_config = json.loads(reader.read())
|
|
for key, value in json_config.items():
|
|
self.__dict__[key] = value
|
|
elif isinstance(vocab_size_or_config_json_file, int):
|
|
self.vocab_size = vocab_size_or_config_json_file
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.hidden_act = hidden_act
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.initializer_range = initializer_range
|
|
self.v_feature_size = v_feature_size
|
|
self.v_hidden_size = v_hidden_size
|
|
self.v_num_hidden_layers = v_num_hidden_layers
|
|
self.v_num_attention_heads = v_num_attention_heads
|
|
self.v_intermediate_size = v_intermediate_size
|
|
self.v_attention_probs_dropout_prob = v_attention_probs_dropout_prob
|
|
self.v_hidden_act = v_hidden_act
|
|
self.v_hidden_dropout_prob = v_hidden_dropout_prob
|
|
self.v_initializer_range = v_initializer_range
|
|
self.v_biattention_id = v_biattention_id
|
|
self.t_biattention_id = t_biattention_id
|
|
self.v_target_size = v_target_size
|
|
self.bi_hidden_size = bi_hidden_size
|
|
self.bi_num_attention_heads = bi_num_attention_heads
|
|
self.predict_feature = predict_feature
|
|
self.fast_mode = fast_mode
|
|
self.fixed_v_layer = fixed_v_layer
|
|
self.fixed_t_layer = fixed_t_layer
|
|
|
|
self.in_batch_pairs = in_batch_pairs
|
|
self.fusion_method = fusion_method
|
|
self.intra_gate = intra_gate
|
|
self.with_coattention=with_coattention
|
|
else:
|
|
raise ValueError(
|
|
"First argument must be either a vocabulary size (int)"
|
|
"or the path to a pretrained model config file (str)"
|
|
)
|
|
|
|
@classmethod
|
|
def from_dict(cls, json_object):
|
|
"""Constructs a `BertConfig` from a Python dictionary of parameters."""
|
|
config = BertConfig(vocab_size_or_config_json_file=-1)
|
|
for key, value in json_object.items():
|
|
config.__dict__[key] = value
|
|
return config
|
|
|
|
@classmethod
|
|
def from_json_file(cls, json_file):
|
|
"""Constructs a `BertConfig` from a json file of parameters."""
|
|
with open(json_file, "r", encoding="utf-8") as reader:
|
|
text = reader.read()
|
|
return cls.from_dict(json.loads(text))
|
|
|
|
def __repr__(self):
|
|
return str(self.to_json_string())
|
|
|
|
def to_dict(self):
|
|
"""Serializes this instance to a Python dictionary."""
|
|
output = copy.deepcopy(self.__dict__)
|
|
return output
|
|
|
|
def to_json_string(self):
|
|
"""Serializes this instance to a JSON string."""
|
|
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
|
|
|
|
try:
|
|
# from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
|
|
import torch.nn.LayerNorm as BertLayerNorm
|
|
except ImportError:
|
|
# logger.info(
|
|
# "Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex ."
|
|
# )
|
|
pass
|
|
|
|
class BertLayerNorm(nn.Module):
|
|
def __init__(self, hidden_size, eps=1e-12):
|
|
"""Construct a layernorm module in the TF style (epsilon inside the square root).
|
|
"""
|
|
super(BertLayerNorm, self).__init__()
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
self.bias = nn.Parameter(torch.zeros(hidden_size))
|
|
self.variance_epsilon = eps
|
|
|
|
def forward(self, x):
|
|
u = x.mean(-1, keepdim=True)
|
|
s = (x - u).pow(2).mean(-1, keepdim=True)
|
|
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
|
|
return self.weight * x + self.bias
|
|
|
|
class BertEmbeddingsDialog(nn.Module):
|
|
def __init__(self, config, device):
|
|
super(BertEmbeddingsDialog, self).__init__()
|
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
|
max_seq_len = 256
|
|
d_model = config.hidden_size
|
|
pe = torch.zeros(max_seq_len, d_model)
|
|
for pos in range(max_seq_len):
|
|
for i in range(0, d_model, 2):
|
|
pe[pos, i] = \
|
|
math.sin(pos / (10000 ** ((2 * i)/d_model)))
|
|
pe[pos, i + 1] = \
|
|
math.cos(pos / (10000 ** ((2 * (i + 1))/d_model)))
|
|
self.pe = pe.to(device)
|
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
|
# add support for additional segment embeddings. Supporting 10 additional embedding as of now
|
|
self.token_type_embeddings_extension = nn.Embedding(10,config.hidden_size)
|
|
# adding specialized embeddings for sep tokens
|
|
self.sep_embeddings = nn.Embedding(50,config.hidden_size)
|
|
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
|
# any TensorFlow checkpoint file
|
|
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
self.config = config
|
|
|
|
def forward(self, input_ids, sep_indices=None, sep_len=None, token_type_ids=None):
|
|
seq_length = input_ids.size(1)
|
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
|
|
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
|
|
if token_type_ids is None:
|
|
token_type_ids = torch.zeros_like(input_ids)
|
|
|
|
words_embeddings = self.word_embeddings(input_ids)
|
|
position_embeddings = self.position_embeddings(position_ids)
|
|
|
|
token_type_ids_extension = token_type_ids - self.config.type_vocab_size
|
|
token_type_ids_extension_mask = (token_type_ids_extension >= 0).float()
|
|
token_type_ids_extension = (token_type_ids_extension.float() * token_type_ids_extension_mask).long()
|
|
|
|
token_type_ids_mask = (token_type_ids < self.config.type_vocab_size).float()
|
|
assert torch.sum(token_type_ids_extension_mask + token_type_ids_mask) == \
|
|
torch.numel(token_type_ids) == torch.numel(token_type_ids_mask)
|
|
token_type_ids = (token_type_ids.float() * token_type_ids_mask).long()
|
|
|
|
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
|
token_type_embeddings_extension = self.token_type_embeddings_extension(token_type_ids_extension)
|
|
|
|
token_type_embeddings = (token_type_embeddings * token_type_ids_mask.unsqueeze(-1)) + \
|
|
(token_type_embeddings_extension * token_type_ids_extension_mask.unsqueeze(-1))
|
|
|
|
embeddings = words_embeddings + position_embeddings + token_type_embeddings
|
|
|
|
embeddings = self.LayerNorm(embeddings)
|
|
embeddings = self.dropout(embeddings)
|
|
return embeddings
|
|
|
|
class BertSelfAttention(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertSelfAttention, self).__init__()
|
|
if config.hidden_size % config.num_attention_heads != 0:
|
|
raise ValueError(
|
|
"The hidden size (%d) is not a multiple of the number of attention "
|
|
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
|
)
|
|
self.num_attention_heads = config.num_attention_heads
|
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
|
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
|
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
|
|
|
def transpose_for_scores(self, x):
|
|
new_x_shape = x.size()[:-1] + (
|
|
self.num_attention_heads,
|
|
self.attention_head_size,
|
|
)
|
|
x = x.view(*new_x_shape)
|
|
return x.permute(0, 2, 1, 3)
|
|
|
|
def forward(self, hidden_states, attention_mask):
|
|
mixed_query_layer = self.query(hidden_states)
|
|
mixed_key_layer = self.key(hidden_states)
|
|
mixed_value_layer = self.value(hidden_states)
|
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer)
|
|
key_layer = self.transpose_for_scores(mixed_key_layer)
|
|
value_layer = self.transpose_for_scores(mixed_value_layer)
|
|
|
|
# Take the dot product between "query" and "key" to get the raw attention scores.
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
|
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
|
attention_scores = attention_scores + attention_mask
|
|
|
|
# Normalize the attention scores to probabilities.
|
|
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
|
|
|
# This is actually dropping out entire tokens to attend to, which might
|
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
|
attention_probs = self.dropout(attention_probs)
|
|
|
|
context_layer = torch.matmul(attention_probs, value_layer)
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
|
context_layer = context_layer.view(*new_context_layer_shape)
|
|
|
|
return context_layer, attention_probs
|
|
|
|
class BertSelfOutput(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertSelfOutput, self).__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
def forward(self, hidden_states, input_tensor):
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
|
return hidden_states
|
|
|
|
class BertAttention(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertAttention, self).__init__()
|
|
self.self = BertSelfAttention(config)
|
|
self.output = BertSelfOutput(config)
|
|
|
|
def forward(self, input_tensor, attention_mask):
|
|
self_output, attention_probs = self.self(input_tensor, attention_mask)
|
|
attention_output = self.output(self_output, input_tensor)
|
|
return attention_output, attention_probs
|
|
|
|
|
|
class BertIntermediate(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertIntermediate, self).__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
if isinstance(config.hidden_act, str) or (
|
|
sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)
|
|
):
|
|
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
|
else:
|
|
self.intermediate_act_fn = config.hidden_act
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class BertOutput(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertOutput, self).__init__()
|
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
def forward(self, hidden_states, input_tensor):
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
|
return hidden_states
|
|
|
|
|
|
class BertLayer(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertLayer, self).__init__()
|
|
self.attention = BertAttention(config)
|
|
self.intermediate = BertIntermediate(config)
|
|
self.output = BertOutput(config)
|
|
|
|
def forward(self, hidden_states, attention_mask):
|
|
attention_output, attention_probs = self.attention(hidden_states, attention_mask)
|
|
intermediate_output = self.intermediate(attention_output)
|
|
layer_output = self.output(intermediate_output, attention_output)
|
|
return layer_output, attention_probs
|
|
|
|
|
|
class TextGraphLayer(nn.Module):
|
|
def __init__(self, config):
|
|
super(TextGraphLayer, self).__init__()
|
|
self.config = config
|
|
self.gnn_act = ACT2FN[config.gnn_act]
|
|
|
|
self.num_q_gnn_layers = config.num_q_gnn_layers
|
|
self.num_h_gnn_layers = config.num_h_gnn_layers
|
|
|
|
self.q_gnn_layers = []
|
|
self.q_gnn_norm_layers = []
|
|
|
|
for _ in range(self.num_q_gnn_layers):
|
|
# Graph layers
|
|
self.q_gnn_layers.append(
|
|
pyg_nn.GATv2Conv(
|
|
config.hidden_size, config.hidden_size//config.num_gnn_attention_heads,
|
|
config.num_gnn_attention_heads,
|
|
dropout=config.gnn_dropout_prob,
|
|
edge_dim=config.q_gnn_edge_dim,
|
|
concat=True
|
|
)
|
|
)
|
|
# After each graph layer, a normalization layer is added
|
|
self.q_gnn_norm_layers.append(pyg_nn.PairNorm())
|
|
|
|
self.q_gnn_layers = nn.ModuleList(self.q_gnn_layers)
|
|
self.q_gnn_norm_layers = nn.ModuleList(self.q_gnn_norm_layers)
|
|
|
|
self.h_gnn_layers = []
|
|
self.h_gnn_norm_layers = []
|
|
|
|
for _ in range(self.num_h_gnn_layers):
|
|
self.h_gnn_layers.append(
|
|
pyg_nn.GATv2Conv(
|
|
config.hidden_size, config.hidden_size//config.num_gnn_attention_heads,
|
|
config.num_gnn_attention_heads,
|
|
dropout=config.gnn_dropout_prob,
|
|
concat=True
|
|
)
|
|
)
|
|
# After each graph layer, a normalization layer is added
|
|
self.h_gnn_norm_layers.append(pyg_nn.PairNorm())
|
|
|
|
self.h_gnn_layers = nn.ModuleList(self.h_gnn_layers)
|
|
self.h_gnn_norm_layers = nn.ModuleList(self.h_gnn_norm_layers)
|
|
|
|
self.h_gnn_dense_hub = nn.Linear(config.v_hidden_size, config.hidden_size)
|
|
self.h_gnn_layer_norm_hub = BertLayerNorm(config.hidden_size, eps=1e-12)
|
|
self.h_gnn_dropout_hub = nn.Dropout(config.gnn_dropout_prob)
|
|
|
|
q_dense_pooling = nn.Sequential(
|
|
nn.Linear(config.hidden_size, 1),
|
|
ACT2FN['GeLU'],
|
|
nn.Dropout(config.gnn_dropout_prob)
|
|
)
|
|
self.q_gnn_pooling = pyg_nn.GlobalAttention(q_dense_pooling)
|
|
h_dense_pooling = nn.Sequential(
|
|
nn.Linear(config.hidden_size, 1),
|
|
ACT2FN['GeLU'],
|
|
nn.Dropout(config.gnn_dropout_prob)
|
|
)
|
|
self.h_gnn_pooling = pyg_nn.GlobalAttention(h_dense_pooling)
|
|
|
|
|
|
def forward(
|
|
self, hidden_states, q_edge_indices, q_edge_attributes,
|
|
q_limits, h_edge_indices, h_sep_indices, v_hub,
|
|
len_q_gr=None, len_h_gr=None, len_h_sep=None):
|
|
device = hidden_states.device
|
|
batch_size, _, hidden_size = hidden_states.size()
|
|
if isinstance(q_edge_indices, list):
|
|
assert len(q_edge_indices) == len(q_edge_attributes) == q_limits.size(0) \
|
|
== len(h_edge_indices) == len(h_sep_indices) == batch_size
|
|
else:
|
|
assert q_edge_indices.size(0) == q_edge_attributes.size(0) == q_limits.size(0) \
|
|
== h_edge_indices.size(0) == h_sep_indices.size(0) == batch_size
|
|
if len_q_gr is not None:
|
|
q_edge_indices = [t.squeeze(0)[:, :l].long() for t, l in zip(torch.split(q_edge_indices, 1, dim=0), len_q_gr)]
|
|
q_edge_attributes = [t.squeeze(0)[:l, :] for t, l in zip(torch.split(q_edge_attributes, 1, dim=0), len_q_gr)]
|
|
h_edge_indices = [t.squeeze(0)[:, :l].long() for t, l in zip(torch.split(h_edge_indices, 1, dim=0), len_h_gr)]
|
|
h_sep_indices = [t.squeeze(0)[:l].long() for t, l in zip(torch.split(h_sep_indices, 1, dim=0), len_h_sep)]
|
|
else:
|
|
q_edge_indices = [t.squeeze(0) for t in torch.split(q_edge_indices, 1, dim=0)]
|
|
q_edge_attributes = [t.squeeze(0) for t in torch.split(q_edge_attributes, 1, dim=0)]
|
|
h_edge_indices = [t.squeeze(0) for t in torch.split(h_edge_indices, 1, dim=0)]
|
|
h_sep_indices = [t.squeeze(0).long() for t in torch.split(h_sep_indices, 1, dim=0)]
|
|
|
|
gnn_hidden_states = hidden_states.clone().detach()
|
|
# Extract the history and question node features (without the hub node)
|
|
h_node_feats = []
|
|
q_node_feats = []
|
|
q_limits = q_limits.tolist()
|
|
q_tok_indices_extended = []
|
|
h_sep_indices_extended = []
|
|
for i, (h_sep_idx, q_limit) in enumerate(zip(h_sep_indices, q_limits)):
|
|
batch_data = gnn_hidden_states[i, :, :].clone().detach()
|
|
h_sep_idx = h_sep_idx.unsqueeze(-1).repeat(1, hidden_size)
|
|
h_sep_indices_extended.append(h_sep_idx)
|
|
h_node_feats.append(torch.gather(batch_data, 0, h_sep_idx))
|
|
q_tok_idx = torch.arange(q_limit[0], q_limit[1]).unsqueeze(-1).repeat(1, hidden_size).to(device)
|
|
q_tok_indices_extended.append(q_tok_idx)
|
|
q_node_feats.append(torch.gather(batch_data, 0, q_tok_idx))
|
|
|
|
# if self.use_hub_nodes:
|
|
# Map v_hub to the correct vector space
|
|
v_hub = self.h_gnn_dense_hub(v_hub)
|
|
v_hub = self.h_gnn_layer_norm_hub(v_hub)
|
|
v_hub = self.h_gnn_dropout_hub(v_hub)
|
|
# Add the hub node to the history nodes
|
|
v_hub = torch.split(v_hub, 1, dim=0)
|
|
h_node_feats = [torch.cat((h, x), dim=0) for h, x in zip(h_node_feats, v_hub)]
|
|
|
|
# Create the history graph data and pass them through the GNNs
|
|
pg_hist_data = [Data(x=x, edge_index=idx) for x, idx in zip(h_node_feats, h_edge_indices)]
|
|
pg_hist_loader = DataLoader(pg_hist_data, batch_size=batch_size, shuffle=False)
|
|
for data in pg_hist_loader:
|
|
x_h, edge_index_h, h_gnn_batch_idx = data.x, data.edge_index, data.batch
|
|
for i in range(self.num_h_gnn_layers):
|
|
# Normalization
|
|
x_h = self.h_gnn_norm_layers[i](x_h, h_gnn_batch_idx)
|
|
# Graph propagation
|
|
x_h = self.h_gnn_layers[i](x_h, edge_index_h, edge_attr=None)
|
|
# Activation
|
|
x_h = self.gnn_act(x_h) + x_h
|
|
x_h = self.gnn_act(x_h)
|
|
|
|
|
|
h_hub = self.h_gnn_pooling(x_h, h_gnn_batch_idx)
|
|
|
|
# Add the hub nodes
|
|
h_hub_split = torch.split(h_hub, 1, dim=0)
|
|
q_node_feats = [torch.cat((q, x), dim=0) for q, x in zip(q_node_feats, h_hub_split)]
|
|
|
|
|
|
# Create the question graph data and pass them through the GNNs
|
|
pg_ques_data = [Data(x=x, edge_index=idx, edge_attr=attr) for x, idx, attr in zip(q_node_feats, q_edge_indices, q_edge_attributes)]
|
|
pg_ques_loader = DataLoader(pg_ques_data, batch_size=batch_size, shuffle=False)
|
|
for data in pg_ques_loader:
|
|
x_q, edge_index_q, edge_attr_q, q_gnn_batch_idx = data.x, data.edge_index, data.edge_attr, data.batch
|
|
for i in range(self.num_q_gnn_layers):
|
|
# Normalization
|
|
x_q = self.q_gnn_norm_layers[i](x_q, q_gnn_batch_idx)
|
|
# GNN propagation
|
|
x_q = self.q_gnn_layers[i](x_q, edge_index_q, edge_attr=edge_attr_q)
|
|
# Activation
|
|
x_q = self.gnn_act(x_q) + x_q
|
|
x_q = self.gnn_act(x_q)
|
|
|
|
|
|
q_hub = self.q_gnn_pooling(x_q, q_gnn_batch_idx)
|
|
# Reshape the node features
|
|
h_node_feats = to_data_list(x_h, h_gnn_batch_idx)
|
|
q_node_feats = to_data_list(x_q, q_gnn_batch_idx)
|
|
|
|
# Update the text tokens with the graph feats
|
|
zipped_data = zip(h_node_feats, h_sep_indices_extended, q_node_feats, q_tok_indices_extended)
|
|
for i, (h_node_feat, h_sep_idx, q_node_feat, q_tok_idx) in enumerate(zipped_data):
|
|
gnn_hidden_states[i].scatter(0, h_sep_idx, h_node_feat[:-1])
|
|
gnn_hidden_states[i].scatter(0, q_tok_idx, q_node_feat[:-1])
|
|
|
|
final_hidden_states = 0.5 * (hidden_states + gnn_hidden_states)
|
|
return final_hidden_states, h_hub, q_hub
|
|
|
|
|
|
class BertImageSelfAttention(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertImageSelfAttention, self).__init__()
|
|
if config.v_hidden_size % config.v_num_attention_heads != 0:
|
|
raise ValueError(
|
|
"The hidden size (%d) is not a multiple of the number of attention "
|
|
"heads (%d)" % (config.v_hidden_size, config.v_num_attention_heads)
|
|
)
|
|
self.num_attention_heads = config.v_num_attention_heads
|
|
self.attention_head_size = int(
|
|
config.v_hidden_size / config.v_num_attention_heads
|
|
)
|
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
|
|
|
self.query = nn.Linear(config.v_hidden_size, self.all_head_size)
|
|
self.key = nn.Linear(config.v_hidden_size, self.all_head_size)
|
|
self.value = nn.Linear(config.v_hidden_size, self.all_head_size)
|
|
|
|
self.dropout = nn.Dropout(config.v_attention_probs_dropout_prob)
|
|
|
|
def transpose_for_scores(self, x):
|
|
new_x_shape = x.size()[:-1] + (
|
|
self.num_attention_heads,
|
|
self.attention_head_size,
|
|
)
|
|
x = x.view(*new_x_shape)
|
|
return x.permute(0, 2, 1, 3)
|
|
|
|
def forward(self, hidden_states, attention_mask):
|
|
mixed_query_layer = self.query(hidden_states)
|
|
mixed_key_layer = self.key(hidden_states)
|
|
mixed_value_layer = self.value(hidden_states)
|
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer)
|
|
key_layer = self.transpose_for_scores(mixed_key_layer)
|
|
value_layer = self.transpose_for_scores(mixed_value_layer)
|
|
|
|
# Take the dot product between "query" and "key" to get the raw attention scores.
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
|
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
|
attention_scores = attention_scores + attention_mask
|
|
|
|
# Normalize the attention scores to probabilities.
|
|
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
|
|
|
# This is actually dropping out entire tokens to attend to, which might
|
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
|
attention_probs = self.dropout(attention_probs)
|
|
|
|
context_layer = torch.matmul(attention_probs, value_layer)
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
|
context_layer = context_layer.view(*new_context_layer_shape)
|
|
|
|
return context_layer, attention_probs
|
|
|
|
class BertImageSelfOutput(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertImageSelfOutput, self).__init__()
|
|
self.dense = nn.Linear(config.v_hidden_size, config.v_hidden_size)
|
|
self.LayerNorm = BertLayerNorm(config.v_hidden_size, eps=1e-12)
|
|
self.dropout = nn.Dropout(config.v_hidden_dropout_prob)
|
|
|
|
def forward(self, hidden_states, input_tensor):
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
|
return hidden_states
|
|
|
|
class BertImageAttention(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertImageAttention, self).__init__()
|
|
self.self = BertImageSelfAttention(config)
|
|
self.output = BertImageSelfOutput(config)
|
|
|
|
def forward(self, input_tensor, attention_mask):
|
|
self_output, attention_probs = self.self(input_tensor, attention_mask)
|
|
attention_output = self.output(self_output, input_tensor)
|
|
return attention_output, attention_probs
|
|
|
|
|
|
class BertImageIntermediate(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertImageIntermediate, self).__init__()
|
|
self.dense = nn.Linear(config.v_hidden_size, config.v_intermediate_size)
|
|
if isinstance(config.v_hidden_act, str) or (
|
|
sys.version_info[0] == 2 and isinstance(config.v_hidden_act, unicode)
|
|
):
|
|
self.intermediate_act_fn = ACT2FN[config.v_hidden_act]
|
|
else:
|
|
self.intermediate_act_fn = config.v_hidden_act
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class BertImageOutput(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertImageOutput, self).__init__()
|
|
self.dense = nn.Linear(config.v_intermediate_size, config.v_hidden_size)
|
|
self.LayerNorm = BertLayerNorm(config.v_hidden_size, eps=1e-12)
|
|
self.dropout = nn.Dropout(config.v_hidden_dropout_prob)
|
|
|
|
def forward(self, hidden_states, input_tensor):
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
|
return hidden_states
|
|
|
|
|
|
class BertImageLayer(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertImageLayer, self).__init__()
|
|
self.attention = BertImageAttention(config)
|
|
self.intermediate = BertImageIntermediate(config)
|
|
self.output = BertImageOutput(config)
|
|
|
|
def forward(self, hidden_states, attention_mask):
|
|
attention_output, attention_probs = self.attention(hidden_states, attention_mask)
|
|
intermediate_output = self.intermediate(attention_output)
|
|
layer_output = self.output(intermediate_output, attention_output)
|
|
return layer_output, attention_probs
|
|
|
|
class ImageGraphLayer(nn.Module):
|
|
def __init__(self, config):
|
|
super(ImageGraphLayer, self).__init__()
|
|
self.config = config
|
|
self.gnn_act = ACT2FN[config.gnn_act]
|
|
|
|
self.num_gnn_layers = config.num_v_gnn_layers
|
|
self.gnn_layers = []
|
|
self.gnn_norm_layers = []
|
|
|
|
for _ in range(self.num_gnn_layers):
|
|
self.gnn_layers.append(
|
|
pyg_nn.GATv2Conv(
|
|
config.v_hidden_size, config.v_hidden_size//config.num_gnn_attention_heads,
|
|
config.num_gnn_attention_heads,
|
|
dropout=config.gnn_dropout_prob,
|
|
edge_dim=config.v_gnn_edge_dim,
|
|
concat=True
|
|
)
|
|
)
|
|
# After each graph layer, a normalization layer is added
|
|
self.gnn_norm_layers.append(pyg_nn.PairNorm())
|
|
|
|
self.gnn_layers = nn.ModuleList(self.gnn_layers)
|
|
self.gnn_norm_layers = nn.ModuleList(self.gnn_norm_layers)
|
|
|
|
self.gnn_dense_hub = nn.Linear(config.hidden_size, config.v_hidden_size)
|
|
self.gnn_layer_norm_hub = BertLayerNorm(config.v_hidden_size, eps=1e-12)
|
|
self.gnn_dropout_hub = nn.Dropout(config.gnn_dropout_prob)
|
|
|
|
dense_pooling = nn.Sequential(
|
|
nn.Linear(config.v_hidden_size, 1),
|
|
ACT2FN['GeLU'],
|
|
nn.Dropout(config.gnn_dropout_prob)
|
|
)
|
|
self.gnn_pooling = pyg_nn.GlobalAttention(dense_pooling)
|
|
|
|
def forward(
|
|
self, hidden_states, edge_indices, edge_attributes, hub_states,
|
|
len_img_gr=None):
|
|
# assert hub_states is not None
|
|
gnn_hidden_states = hidden_states.clone().detach()
|
|
batch_size, num_img_reg, v_hidden_size = hidden_states.size()
|
|
node_feats = hidden_states.clone().detach()
|
|
# Remave the [IMG] feats
|
|
node_feats = node_feats[:, 1:]
|
|
node_feats = torch.split(node_feats, 1, dim=0)
|
|
|
|
if len_img_gr is not None:
|
|
edge_indices = [t.squeeze(0)[:, :l].long() for t, l in zip(torch.split(edge_indices, 1, dim=0), len_img_gr)]
|
|
edge_attributes = [t.squeeze(0)[:l, :] for t, l in zip(torch.split(edge_attributes, 1, dim=0), len_img_gr)]
|
|
|
|
# Concat the hub states
|
|
hub_states = self.gnn_dense_hub(hub_states)
|
|
hub_states = self.gnn_dropout_hub(hub_states)
|
|
hub_states = self.gnn_layer_norm_hub(hub_states)
|
|
|
|
hub_states = torch.split(hub_states, 1, dim=0)
|
|
node_feats = [torch.cat((x.squeeze(0), h), dim=0)
|
|
for x, h in zip(node_feats, hub_states)]
|
|
|
|
pg_data = [Data(x, idx, attr) for x, idx, attr in zip(
|
|
node_feats, edge_indices, edge_attributes)]
|
|
pg_dataloader = DataLoader(
|
|
pg_data, batch_size=batch_size, shuffle=False)
|
|
# Gnn forward pass
|
|
for data in pg_dataloader:
|
|
x, edge_index, edge_attr, gnn_batch_idx = data.x, data.edge_index, data.edge_attr, data.batch
|
|
for i in range(self.num_gnn_layers):
|
|
# Normalization
|
|
x = self.gnn_norm_layers[i](x, gnn_batch_idx)
|
|
# GNN propagation
|
|
x = self.gnn_layers[i](x, edge_index, edge_attr=edge_attr)
|
|
# Activation
|
|
x = self.gnn_act(x) + x
|
|
x = self.gnn_act(x)
|
|
|
|
# Reshape the output of the GNN to batch_size x num_img_reg x hidden_dim
|
|
v_hub = self.gnn_pooling(x, gnn_batch_idx)
|
|
|
|
x = x.view(batch_size, num_img_reg, v_hidden_size)
|
|
gnn_hidden_states[:, 1:, :] = x[:, :-1, :]
|
|
|
|
final_hidden_states = 0.5 * (hidden_states + gnn_hidden_states)
|
|
|
|
return final_hidden_states, v_hub
|
|
|
|
|
|
class BertBiAttention(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertBiAttention, self).__init__()
|
|
if config.bi_hidden_size % config.bi_num_attention_heads != 0:
|
|
raise ValueError(
|
|
"The hidden size (%d) is not a multiple of the number of attention "
|
|
"heads (%d)" % (config.bi_hidden_size, config.bi_num_attention_heads)
|
|
)
|
|
|
|
self.num_attention_heads = config.bi_num_attention_heads
|
|
self.attention_head_size = int(
|
|
config.bi_hidden_size / config.bi_num_attention_heads
|
|
)
|
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
|
|
|
# self.scale = nn.Linear(1, self.num_attention_heads, bias=False)
|
|
# self.scale_act_fn = ACT2FN['relu']
|
|
|
|
self.query1 = nn.Linear(config.v_hidden_size, self.all_head_size)
|
|
self.key1 = nn.Linear(config.v_hidden_size, self.all_head_size)
|
|
self.value1 = nn.Linear(config.v_hidden_size, self.all_head_size)
|
|
# self.logit1 = nn.Linear(config.hidden_size, self.num_attention_heads)
|
|
|
|
self.dropout1 = nn.Dropout(config.v_attention_probs_dropout_prob)
|
|
|
|
self.query2 = nn.Linear(config.hidden_size, self.all_head_size)
|
|
self.key2 = nn.Linear(config.hidden_size, self.all_head_size)
|
|
self.value2 = nn.Linear(config.hidden_size, self.all_head_size)
|
|
# self.logit2 = nn.Linear(config.hidden_size, self.num_attention_heads)
|
|
|
|
self.dropout2 = nn.Dropout(config.attention_probs_dropout_prob)
|
|
|
|
def transpose_for_scores(self, x):
|
|
new_x_shape = x.size()[:-1] + (
|
|
self.num_attention_heads,
|
|
self.attention_head_size,
|
|
)
|
|
x = x.view(*new_x_shape)
|
|
return x.permute(0, 2, 1, 3)
|
|
|
|
def forward(self, input_tensor1, attention_mask1, input_tensor2, attention_mask2, co_attention_mask=None, use_co_attention_mask=False):
|
|
|
|
# for vision input.
|
|
mixed_query_layer1 = self.query1(input_tensor1)
|
|
mixed_key_layer1 = self.key1(input_tensor1)
|
|
mixed_value_layer1 = self.value1(input_tensor1)
|
|
# mixed_logit_layer1 = self.logit1(input_tensor1)
|
|
|
|
query_layer1 = self.transpose_for_scores(mixed_query_layer1)
|
|
key_layer1 = self.transpose_for_scores(mixed_key_layer1)
|
|
value_layer1 = self.transpose_for_scores(mixed_value_layer1)
|
|
# logit_layer1 = self.transpose_for_logits(mixed_logit_layer1)
|
|
|
|
# for text input:
|
|
mixed_query_layer2 = self.query2(input_tensor2)
|
|
mixed_key_layer2 = self.key2(input_tensor2)
|
|
mixed_value_layer2 = self.value2(input_tensor2)
|
|
# mixed_logit_layer2 = self.logit2(input_tensor2)
|
|
|
|
query_layer2 = self.transpose_for_scores(mixed_query_layer2)
|
|
key_layer2 = self.transpose_for_scores(mixed_key_layer2)
|
|
value_layer2 = self.transpose_for_scores(mixed_value_layer2)
|
|
# logit_layer2 = self.transpose_for_logits(mixed_logit_layer2)
|
|
|
|
# Take the dot product between "query2" and "key1" to get the raw attention scores for value 1.
|
|
attention_scores1 = torch.matmul(query_layer2, key_layer1.transpose(-1, -2))
|
|
attention_scores1 = attention_scores1 / math.sqrt(self.attention_head_size)
|
|
attention_scores1 = attention_scores1 + attention_mask1
|
|
|
|
if use_co_attention_mask:
|
|
attention_scores1 = attention_scores1 + co_attention_mask.permute(0,1,3,2)
|
|
|
|
# Normalize the attention scores to probabilities.
|
|
attention_probs1 = nn.Softmax(dim=-1)(attention_scores1)
|
|
|
|
# This is actually dropping out entire tokens to attend to, which might
|
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
|
attention_probs1 = self.dropout1(attention_probs1)
|
|
|
|
context_layer1 = torch.matmul(attention_probs1, value_layer1)
|
|
context_layer1 = context_layer1.permute(0, 2, 1, 3).contiguous()
|
|
new_context_layer_shape1 = context_layer1.size()[:-2] + (self.all_head_size,)
|
|
context_layer1 = context_layer1.view(*new_context_layer_shape1)
|
|
|
|
# Take the dot product between "query1" and "key2" to get the raw attention scores for value 2.
|
|
attention_scores2 = torch.matmul(query_layer1, key_layer2.transpose(-1, -2))
|
|
attention_scores2 = attention_scores2 / math.sqrt(self.attention_head_size)
|
|
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
|
|
|
# we can comment this line for single flow.
|
|
attention_scores2 = attention_scores2 + attention_mask2
|
|
if use_co_attention_mask:
|
|
attention_scores2 = attention_scores2 + co_attention_mask
|
|
|
|
# Normalize the attention scores to probabilities.
|
|
attention_probs2 = nn.Softmax(dim=-1)(attention_scores2)
|
|
|
|
# This is actually dropping out entire tokens to attend to, which might
|
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
|
attention_probs2 = self.dropout2(attention_probs2)
|
|
|
|
context_layer2 = torch.matmul(attention_probs2, value_layer2)
|
|
context_layer2 = context_layer2.permute(0, 2, 1, 3).contiguous()
|
|
new_context_layer_shape2 = context_layer2.size()[:-2] + (self.all_head_size,)
|
|
context_layer2 = context_layer2.view(*new_context_layer_shape2)
|
|
|
|
return context_layer1, context_layer2, (attention_probs1, attention_probs2)
|
|
|
|
class BertBiOutput(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertBiOutput, self).__init__()
|
|
|
|
self.dense1 = nn.Linear(config.bi_hidden_size, config.v_hidden_size)
|
|
self.LayerNorm1 = BertLayerNorm(config.v_hidden_size, eps=1e-12)
|
|
self.dropout1 = nn.Dropout(config.v_hidden_dropout_prob)
|
|
|
|
self.q_dense1 = nn.Linear(config.bi_hidden_size, config.v_hidden_size)
|
|
self.q_dropout1 = nn.Dropout(config.v_hidden_dropout_prob)
|
|
|
|
self.dense2 = nn.Linear(config.bi_hidden_size, config.hidden_size)
|
|
self.LayerNorm2 = BertLayerNorm(config.hidden_size, eps=1e-12)
|
|
self.dropout2 = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
self.q_dense2 = nn.Linear(config.bi_hidden_size, config.hidden_size)
|
|
self.q_dropout2 = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
def forward(self, hidden_states1, input_tensor1, hidden_states2, input_tensor2):
|
|
|
|
|
|
context_state1 = self.dense1(hidden_states1)
|
|
context_state1 = self.dropout1(context_state1)
|
|
|
|
context_state2 = self.dense2(hidden_states2)
|
|
context_state2 = self.dropout2(context_state2)
|
|
|
|
hidden_states1 = self.LayerNorm1(context_state1 + input_tensor1)
|
|
hidden_states2 = self.LayerNorm2(context_state2 + input_tensor2)
|
|
|
|
return hidden_states1, hidden_states2
|
|
|
|
class BertConnectionLayer(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertConnectionLayer, self).__init__()
|
|
self.biattention = BertBiAttention(config)
|
|
|
|
self.biOutput = BertBiOutput(config)
|
|
|
|
self.v_intermediate = BertImageIntermediate(config)
|
|
self.v_output = BertImageOutput(config)
|
|
|
|
self.t_intermediate = BertIntermediate(config)
|
|
self.t_output = BertOutput(config)
|
|
|
|
def forward(self, input_tensor1, attention_mask1, input_tensor2, attention_mask2, co_attention_mask=None, use_co_attention_mask=False):
|
|
|
|
bi_output1, bi_output2, co_attention_probs = self.biattention(
|
|
input_tensor1, attention_mask1, input_tensor2, attention_mask2, co_attention_mask, use_co_attention_mask
|
|
)
|
|
|
|
attention_output1, attention_output2 = self.biOutput(bi_output2, input_tensor1, bi_output1, input_tensor2)
|
|
|
|
intermediate_output1 = self.v_intermediate(attention_output1)
|
|
layer_output1 = self.v_output(intermediate_output1, attention_output1)
|
|
|
|
intermediate_output2 = self.t_intermediate(attention_output2)
|
|
layer_output2 = self.t_output(intermediate_output2, attention_output2)
|
|
|
|
return layer_output1, layer_output2, co_attention_probs
|
|
|
|
class BertEncoder(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertEncoder, self).__init__()
|
|
|
|
# in the bert encoder, we need to extract three things here.
|
|
# text bert layer: BertLayer
|
|
# vision bert layer: BertImageLayer
|
|
# Bi-Attention: Given the output of two bertlayer, perform bi-directional
|
|
# attention and add on two layers.
|
|
|
|
self.FAST_MODE = config.fast_mode
|
|
self.with_coattention = config.with_coattention
|
|
self.v_biattention_id = config.v_biattention_id
|
|
self.t_biattention_id = config.t_biattention_id
|
|
self.in_batch_pairs = config.in_batch_pairs
|
|
self.fixed_t_layer = config.fixed_t_layer
|
|
self.fixed_v_layer = config.fixed_v_layer
|
|
self.t_gnn_ids = config.t_gnn_ids
|
|
self.v_gnn_ids = config.v_gnn_ids
|
|
|
|
v_layer = BertImageLayer(config)
|
|
connect_layer = BertConnectionLayer(config)
|
|
|
|
self.layer = []
|
|
for _ in range(config.num_hidden_layers):
|
|
self.layer.append(BertLayer(config))
|
|
|
|
self.layer = nn.ModuleList(self.layer)
|
|
|
|
txt_graph_layer = TextGraphLayer(config)
|
|
self.t_gnns = nn.ModuleList([txt_graph_layer for _ in range(len(self.t_gnn_ids))])
|
|
|
|
|
|
self.v_layer = nn.ModuleList(
|
|
[copy.deepcopy(v_layer) for _ in range(config.v_num_hidden_layers)]
|
|
)
|
|
|
|
img_graph_layer = ImageGraphLayer(config)
|
|
self.v_gnns = nn.ModuleList([img_graph_layer for _ in range(len(self.v_gnn_ids))])
|
|
self.c_layer = nn.ModuleList(
|
|
[copy.deepcopy(connect_layer)
|
|
for _ in range(len(config.v_biattention_id))]
|
|
)
|
|
|
|
|
|
def forward(
|
|
self,
|
|
txt_embedding,
|
|
image_embedding,
|
|
txt_attention_mask,
|
|
image_attention_mask,
|
|
image_edge_indices,
|
|
image_edge_attributes,
|
|
question_edge_indices,
|
|
question_edge_attributes,
|
|
question_limits,
|
|
history_edge_indices,
|
|
history_sep_indices,
|
|
co_attention_mask=None,
|
|
output_all_encoded_layers=True,
|
|
output_all_attention_masks=False,
|
|
len_img_gr=None, len_q_gr=None, len_h_gr=None, len_h_sep=None
|
|
):
|
|
|
|
v_start = 0
|
|
t_start = 0
|
|
count = 0
|
|
all_encoder_layers_t = []
|
|
all_encoder_layers_v = []
|
|
|
|
all_attention_mask_t = []
|
|
all_attnetion_mask_v = []
|
|
all_attention_mask_c = []
|
|
|
|
batch_size, num_words, t_hidden_size = txt_embedding.size()
|
|
_, num_regions, v_hidden_size = image_embedding.size()
|
|
|
|
# self.pool_feats(txt_embedding)
|
|
use_co_attention_mask = False
|
|
|
|
# Init the v_hub with the [IMG]-token embedding
|
|
v_hub = image_embedding[:, 0, :].clone().detach()
|
|
|
|
|
|
q_hub = None
|
|
for v_layer_id, t_layer_id in zip(self.v_biattention_id, self.t_biattention_id):
|
|
|
|
v_end = v_layer_id
|
|
t_end = t_layer_id
|
|
|
|
assert self.fixed_t_layer <= t_end
|
|
assert self.fixed_v_layer <= v_end
|
|
|
|
for idx in range(v_start, self.fixed_v_layer):
|
|
with torch.no_grad():
|
|
image_embedding, image_attention_probs = self.v_layer[idx](
|
|
image_embedding, image_attention_mask)
|
|
v_start = self.fixed_v_layer
|
|
|
|
if output_all_attention_masks:
|
|
all_attnetion_mask_v.append(image_attention_probs)
|
|
|
|
for idx in range(v_start, v_end):
|
|
# Perfrom graph message passing and aggr. if applicable
|
|
if idx in self.v_gnn_ids:
|
|
assert q_hub is not None
|
|
v_gnn_layer_idx = self.v_gnn_ids.index(idx)
|
|
image_embedding, v_hub = self.v_gnns[v_gnn_layer_idx](
|
|
image_embedding,
|
|
image_edge_indices,
|
|
image_edge_attributes,
|
|
q_hub,
|
|
len_img_gr=len_img_gr,
|
|
)
|
|
|
|
# Perform standard bert self-attention
|
|
image_embedding, image_attention_probs = self.v_layer[idx](
|
|
image_embedding, image_attention_mask)
|
|
if output_all_attention_masks:
|
|
all_attnetion_mask_v.append(image_attention_probs)
|
|
|
|
for idx in range(t_start, self.fixed_t_layer):
|
|
with torch.no_grad():
|
|
txt_embedding, txt_attention_probs = self.layer[idx](txt_embedding, txt_attention_mask)
|
|
t_start = self.fixed_t_layer
|
|
if output_all_attention_masks:
|
|
all_attention_mask_t.append(txt_attention_probs)
|
|
|
|
for idx in range(t_start, t_end):
|
|
# Perfrom graph message passing and aggr. if applicable
|
|
if idx in self.t_gnn_ids:
|
|
t_gnn_layer_idx = self.t_gnn_ids.index(idx)
|
|
txt_embedding, h_hub, q_hub = self.t_gnns[t_gnn_layer_idx](
|
|
txt_embedding,
|
|
question_edge_indices,
|
|
question_edge_attributes,
|
|
question_limits,
|
|
history_edge_indices,
|
|
history_sep_indices,
|
|
v_hub,
|
|
len_q_gr=len_q_gr,
|
|
len_h_gr=len_h_gr,
|
|
len_h_sep=len_h_sep
|
|
)
|
|
# Perform standard bert self-attention
|
|
txt_embedding, txt_attention_probs = self.layer[idx](txt_embedding, txt_attention_mask)
|
|
if output_all_attention_masks:
|
|
all_attention_mask_t.append(txt_attention_probs)
|
|
|
|
if count == 0 and self.in_batch_pairs:
|
|
# new batch size is the batch_size ^2
|
|
image_embedding = image_embedding.unsqueeze(0).expand(batch_size, batch_size, num_regions, v_hidden_size).contiguous(
|
|
).view(batch_size*batch_size, num_regions, v_hidden_size)
|
|
image_attention_mask = image_attention_mask.unsqueeze(0).expand(
|
|
batch_size, batch_size, 1, 1, num_regions).contiguous().view(batch_size*batch_size, 1, 1, num_regions)
|
|
|
|
txt_embedding = txt_embedding.unsqueeze(1).expand(batch_size, batch_size, num_words, t_hidden_size).contiguous(
|
|
).view(batch_size*batch_size, num_words, t_hidden_size)
|
|
txt_attention_mask = txt_attention_mask.unsqueeze(1).expand(
|
|
batch_size, batch_size, 1, 1, num_words).contiguous().view(batch_size*batch_size, 1, 1, num_words)
|
|
co_attention_mask = co_attention_mask.unsqueeze(1).expand(
|
|
batch_size, batch_size, 1, num_regions, num_words).contiguous().view(batch_size*batch_size, 1, num_regions, num_words)
|
|
|
|
if self.with_coattention:
|
|
# do the bi attention.
|
|
image_embedding, txt_embedding, co_attention_probs = self.c_layer[count](
|
|
image_embedding, image_attention_mask, txt_embedding, txt_attention_mask, co_attention_mask, use_co_attention_mask)
|
|
|
|
# use_co_attention_mask = False
|
|
if output_all_attention_masks:
|
|
all_attention_mask_c.append(co_attention_probs)
|
|
|
|
v_start = v_end
|
|
t_start = t_end
|
|
count += 1
|
|
|
|
if output_all_encoded_layers:
|
|
all_encoder_layers_t.append(txt_embedding)
|
|
all_encoder_layers_v.append(image_embedding)
|
|
|
|
for idx in range(v_start, len(self.v_layer)):
|
|
# Perfrom graph message passing and aggr. if applicable
|
|
if idx in self.v_gnn_ids:
|
|
v_gnn_layer_idx = self.v_gnn_ids.index(idx)
|
|
image_embedding, v_hub = self.v_gnns[v_gnn_layer_idx](
|
|
image_embedding,
|
|
image_edge_indices,
|
|
image_edge_attributes,
|
|
q_hub,
|
|
len_img_gr=len_img_gr
|
|
)
|
|
|
|
# Perform standard bert self-attention
|
|
image_embedding, image_attention_probs = self.v_layer[idx](
|
|
image_embedding, image_attention_mask)
|
|
|
|
if output_all_attention_masks:
|
|
all_attnetion_mask_v.append(image_attention_probs)
|
|
|
|
|
|
for idx in range(t_start, len(self.layer)):
|
|
# Perfrom graph message passing and aggr. if applicable
|
|
if idx in self.t_gnn_ids:
|
|
t_gnn_layer_idx = self.t_gnn_ids.index(idx)
|
|
txt_embedding, h_hub, q_hub = self.t_gnns[t_gnn_layer_idx](
|
|
txt_embedding,
|
|
question_edge_indices,
|
|
question_edge_attributes,
|
|
question_limits,
|
|
history_edge_indices,
|
|
history_sep_indices,
|
|
v_hub,
|
|
len_q_gr=len_q_gr,
|
|
len_h_gr=len_h_gr,
|
|
len_h_sep=len_h_sep
|
|
)
|
|
|
|
# Perform standard bert self-attention
|
|
txt_embedding, txt_attention_probs = self.layer[idx](txt_embedding, txt_attention_mask)
|
|
|
|
if output_all_attention_masks:
|
|
all_attention_mask_t.append(txt_attention_probs)
|
|
|
|
# add the end part to finish.
|
|
if not output_all_encoded_layers:
|
|
all_encoder_layers_t.append(txt_embedding)
|
|
all_encoder_layers_v.append(image_embedding)
|
|
|
|
|
|
return all_encoder_layers_t, all_encoder_layers_v, (all_attention_mask_t, all_attnetion_mask_v, all_attention_mask_c), (h_hub, q_hub, v_hub)
|
|
|
|
|
|
class BertTextPooler(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertTextPooler, self).__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.bi_hidden_size)
|
|
self.activation = nn.ReLU()
|
|
|
|
def forward(self, hidden_states):
|
|
# We "pool" the model by simply taking the hidden state corresponding
|
|
# to the first token.
|
|
first_token_tensor = hidden_states[:, 0]
|
|
pooled_output = self.dense(first_token_tensor)
|
|
pooled_output = self.activation(pooled_output)
|
|
return pooled_output
|
|
|
|
class BertImagePooler(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertImagePooler, self).__init__()
|
|
self.dense = nn.Linear(config.v_hidden_size, config.bi_hidden_size)
|
|
self.activation = nn.ReLU()
|
|
|
|
def forward(self, hidden_states):
|
|
# We "pool" the model by simply taking the hidden state corresponding
|
|
# to the first token.
|
|
first_token_tensor = hidden_states[:, 0]
|
|
pooled_output = self.dense(first_token_tensor)
|
|
pooled_output = self.activation(pooled_output)
|
|
return pooled_output
|
|
|
|
class BertPredictionHeadTransform(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertPredictionHeadTransform, self).__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
if isinstance(config.hidden_act, str) or (
|
|
sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)
|
|
):
|
|
self.transform_act_fn = ACT2FN[config.hidden_act]
|
|
else:
|
|
self.transform_act_fn = config.hidden_act
|
|
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.transform_act_fn(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states)
|
|
return hidden_states
|
|
|
|
class BertImgPredictionHeadTransform(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertImgPredictionHeadTransform, self).__init__()
|
|
self.dense = nn.Linear(config.v_hidden_size, config.v_hidden_size)
|
|
if isinstance(config.hidden_act, str) or (
|
|
sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)
|
|
):
|
|
self.transform_act_fn = ACT2FN[config.hidden_act]
|
|
else:
|
|
self.transform_act_fn = config.v_hidden_act
|
|
self.LayerNorm = BertLayerNorm(config.v_hidden_size, eps=1e-12)
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.transform_act_fn(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states)
|
|
return hidden_states
|
|
|
|
class BertLMPredictionHead(nn.Module):
|
|
def __init__(self, config, bert_model_embedding_weights):
|
|
super(BertLMPredictionHead, self).__init__()
|
|
self.transform = BertPredictionHeadTransform(config)
|
|
|
|
# The output weights are the same as the input embeddings, but there is
|
|
# an output-only bias for each token.
|
|
self.decoder = nn.Linear(
|
|
bert_model_embedding_weights.size(1),
|
|
bert_model_embedding_weights.size(0),
|
|
bias=False,
|
|
)
|
|
self.decoder.weight = bert_model_embedding_weights
|
|
self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.transform(hidden_states)
|
|
hidden_states = self.decoder(hidden_states) + self.bias
|
|
return hidden_states
|
|
|
|
class BertOnlyMLMHead(nn.Module):
|
|
def __init__(self, config, bert_model_embedding_weights):
|
|
super(BertOnlyMLMHead, self).__init__()
|
|
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
|
|
|
|
def forward(self, sequence_output):
|
|
prediction_scores = self.predictions(sequence_output)
|
|
return prediction_scores
|
|
|
|
class BertOnlyNSPHead(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertOnlyNSPHead, self).__init__()
|
|
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
|
|
|
def forward(self, pooled_output):
|
|
seq_relationship_score = self.seq_relationship(pooled_output)
|
|
return seq_relationship_score
|
|
|
|
class BertPreTrainingHeads(nn.Module):
|
|
def __init__(self, config, bert_model_embedding_weights):
|
|
super(BertPreTrainingHeads, self).__init__()
|
|
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
|
|
self.bi_seq_relationship = nn.Linear(config.bi_hidden_size, 2)
|
|
self.imagePredictions = BertImagePredictionHead(config)
|
|
self.fusion_method = config.fusion_method
|
|
self.dropout = nn.Dropout(0.1)
|
|
|
|
def forward(
|
|
self, sequence_output_t, sequence_output_v, pooled_output_t, pooled_output_v
|
|
):
|
|
|
|
if self.fusion_method == 'sum':
|
|
pooled_output = self.dropout(pooled_output_t + pooled_output_v)
|
|
elif self.fusion_method == 'mul':
|
|
pooled_output = self.dropout(pooled_output_t * pooled_output_v)
|
|
else:
|
|
assert False
|
|
|
|
prediction_scores_t = self.predictions(sequence_output_t)
|
|
seq_relationship_score = self.bi_seq_relationship(pooled_output)
|
|
prediction_scores_v = self.imagePredictions(sequence_output_v)
|
|
|
|
return prediction_scores_t, prediction_scores_v, seq_relationship_score
|
|
|
|
class BertImagePredictionHead(nn.Module):
|
|
def __init__(self, config):
|
|
super(BertImagePredictionHead, self).__init__()
|
|
self.transform = BertImgPredictionHeadTransform(config)
|
|
|
|
# The output weights are the same as the input embeddings, but there is
|
|
# an output-only bias for each token.
|
|
self.decoder = nn.Linear(config.v_hidden_size, config.v_target_size)
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.transform(hidden_states)
|
|
hidden_states = self.decoder(hidden_states)
|
|
return hidden_states
|
|
|
|
class BertPreTrainedModel(nn.Module):
|
|
""" An abstract class to handle weights initialization and
|
|
a simple interface for dowloading and loading pretrained models.
|
|
"""
|
|
|
|
def __init__(self, config, device='cuda:0', default_gpu=True, *inputs, **kwargs):
|
|
super(BertPreTrainedModel, self).__init__()
|
|
|
|
if not isinstance(config, BertConfig):
|
|
raise ValueError(
|
|
"Parameter config in `{}(config)` should be an instance of class `BertConfig`. "
|
|
"To create a model from a Google pretrained model use "
|
|
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
|
|
self.__class__.__name__, self.__class__.__name__
|
|
)
|
|
)
|
|
|
|
self.config = config
|
|
|
|
def init_bert_weights(self, module):
|
|
""" Initialize the weights.
|
|
"""
|
|
if isinstance(module, (nn.Linear, nn.Embedding)):
|
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
elif isinstance(module, BertLayerNorm):
|
|
module.bias.data.zero_()
|
|
module.weight.data.fill_(1.0)
|
|
if isinstance(module, nn.Linear) and module.bias is not None:
|
|
module.bias.data.zero_()
|
|
|
|
@classmethod
|
|
def from_pretrained(
|
|
cls,
|
|
pretrained_model_name_or_path,
|
|
config,
|
|
device,
|
|
use_apex=False,
|
|
default_gpu=True,
|
|
state_dict=None,
|
|
cache_dir=None,
|
|
from_tf=False,
|
|
*inputs,
|
|
**kwargs
|
|
):
|
|
"""
|
|
Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict.
|
|
Download and cache the pre-trained model file if needed.
|
|
|
|
Params:
|
|
pretrained_model_name_or_path: either:
|
|
- a str with the name of a pre-trained model to load selected in the list of:
|
|
. `bert-base-uncased`
|
|
. `bert-large-uncased`
|
|
. `bert-base-cased`
|
|
. `bert-large-cased`
|
|
. `bert-base-multilingual-uncased`
|
|
. `bert-base-multilingual-cased`
|
|
. `bert-base-chinese`
|
|
- a path or url to a pretrained model archive containing:
|
|
. `bert_config.json` a configuration file for the model
|
|
. `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance
|
|
- a path or url to a pretrained model archive containing:
|
|
. `bert_config.json` a configuration file for the model
|
|
. `model.chkpt` a TensorFlow checkpoint
|
|
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
|
|
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
|
|
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
|
|
*inputs, **kwargs: additional input for the specific Bert class
|
|
(ex: num_labels for BertForSequenceClassification)
|
|
"""
|
|
CONFIG_NAME = "bert_config.json"
|
|
WEIGHTS_NAME = "pytorch_model.bin"
|
|
TF_WEIGHTS_NAME = "model.ckpt"
|
|
|
|
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
|
|
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
|
|
else:
|
|
archive_file = pretrained_model_name_or_path
|
|
# redirect to the cache, if necessary
|
|
try:
|
|
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
|
|
except EnvironmentError:
|
|
logger.error(
|
|
"Model name '{}' was not found in model name list ({}). "
|
|
"We assumed '{}' was a path or url but couldn't find any file "
|
|
"associated to this path or url.".format(
|
|
pretrained_model_name_or_path,
|
|
", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()),
|
|
archive_file,
|
|
)
|
|
)
|
|
return None
|
|
|
|
if default_gpu:
|
|
if resolved_archive_file == archive_file:
|
|
logger.info("loading archive file {}".format(archive_file))
|
|
else:
|
|
logger.info(
|
|
"loading archive file {} from cache at {}".format(
|
|
archive_file, resolved_archive_file
|
|
)
|
|
)
|
|
tempdir = None
|
|
if os.path.isdir(resolved_archive_file) or from_tf:
|
|
serialization_dir = resolved_archive_file
|
|
elif resolved_archive_file[-3:] == 'bin':
|
|
serialization_dir = '/'.join(resolved_archive_file.split('/')[:-1])
|
|
WEIGHTS_NAME = resolved_archive_file.split('/')[-1]
|
|
else:
|
|
# Extract archive to temp dir
|
|
tempdir = tempfile.mkdtemp()
|
|
logger.info(
|
|
"extracting archive file {} to temp dir {}".format(
|
|
resolved_archive_file, tempdir
|
|
)
|
|
)
|
|
with tarfile.open(resolved_archive_file, "r:gz") as archive:
|
|
archive.extractall(tempdir)
|
|
serialization_dir = tempdir
|
|
# Load config
|
|
# config_file = os.path.join(serialization_dir, CONFIG_NAME)
|
|
# config = BertConfig.from_json_file(config_file)
|
|
if default_gpu:
|
|
# cancel output
|
|
# logger.info("Model config {}".format(config))
|
|
pass
|
|
# Instantiate model.
|
|
model = cls(config, device, use_apex, *inputs, **kwargs)
|
|
if state_dict is None and not from_tf:
|
|
weights_path = os.path.join(serialization_dir, WEIGHTS_NAME)
|
|
map_location = {'cuda:0': device}
|
|
state_dict = torch.load(
|
|
weights_path,
|
|
map_location=map_location
|
|
)
|
|
if 'state_dict' in dir(state_dict):
|
|
state_dict = state_dict.state_dict()
|
|
|
|
if tempdir:
|
|
# Clean up temp dir
|
|
shutil.rmtree(tempdir)
|
|
if from_tf:
|
|
# Directly load from a TensorFlow checkpoint
|
|
weights_path = os.path.join(serialization_dir, TF_WEIGHTS_NAME)
|
|
return load_tf_weights_in_bert(model, weights_path)
|
|
# Load from a PyTorch state_dict
|
|
old_keys = []
|
|
new_keys = []
|
|
for key in state_dict.keys():
|
|
new_key = None
|
|
if "gamma" in key:
|
|
new_key = key.replace("gamma", "weight")
|
|
if "beta" in key:
|
|
new_key = key.replace("beta", "bias")
|
|
if new_key:
|
|
old_keys.append(key)
|
|
new_keys.append(new_key)
|
|
for old_key, new_key in zip(old_keys, new_keys):
|
|
state_dict[new_key] = state_dict.pop(old_key)
|
|
|
|
missing_keys = []
|
|
unexpected_keys = []
|
|
error_msgs = []
|
|
# copy state_dict so _load_from_state_dict can modify it
|
|
metadata = getattr(state_dict, "_metadata", None)
|
|
state_dict = state_dict.copy()
|
|
if metadata is not None:
|
|
state_dict._metadata = metadata
|
|
|
|
def load(module, prefix=""):
|
|
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
|
module._load_from_state_dict(
|
|
state_dict,
|
|
prefix,
|
|
local_metadata,
|
|
True,
|
|
missing_keys,
|
|
unexpected_keys,
|
|
error_msgs,
|
|
)
|
|
for name, child in module._modules.items():
|
|
if child is not None:
|
|
load(child, prefix + name + ".")
|
|
|
|
start_prefix = ""
|
|
if not hasattr(model, "bert") and any(
|
|
s.startswith("bert.") for s in state_dict.keys()
|
|
):
|
|
start_prefix = "bert."
|
|
load(model, prefix=start_prefix)
|
|
if len(missing_keys) > 0 and default_gpu:
|
|
logger.info(
|
|
"Weights of {} not initialized from pretrained model: {}".format(
|
|
model.__class__.__name__, missing_keys
|
|
)
|
|
)
|
|
if len(unexpected_keys) > 0 and default_gpu:
|
|
logger.info(
|
|
"Weights from pretrained model not used in {}: {}".format(
|
|
model.__class__.__name__, unexpected_keys
|
|
)
|
|
)
|
|
if len(error_msgs) > 0 and default_gpu:
|
|
raise RuntimeError(
|
|
"Error(s) in loading state_dict for {}:\n\t{}".format(
|
|
model.__class__.__name__, "\n\t".join(error_msgs)
|
|
)
|
|
)
|
|
return model
|
|
|
|
|
|
class BertModel(BertPreTrainedModel):
|
|
"""BERT model ("Bidirectional Embedding Representations from a Transformer").
|
|
|
|
Params:
|
|
config: a BertConfig class instance with the configuration to build a new model
|
|
|
|
Inputs:
|
|
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
|
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
|
|
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
|
|
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
|
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
|
a `sentence B` token (see BERT paper for more details).
|
|
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
|
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
|
input sequence length in the current batch. It's the mask that we typically use for attention when
|
|
a batch has varying length sentences.
|
|
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
|
|
|
|
Outputs: Tuple of (encoded_layers, pooled_output)
|
|
`encoded_layers`: controled by `output_all_encoded_layers` argument:
|
|
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
|
|
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
|
|
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
|
|
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
|
|
to the last attention block of shape [batch_size, sequence_length, hidden_size],
|
|
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
|
|
classifier pretrained on top of the hidden state associated to the first character of the
|
|
input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
|
|
|
|
Example usage:
|
|
```python
|
|
# Already been converted into WordPiece token ids
|
|
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
|
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
|
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
|
|
|
|
config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
|
|
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
|
|
|
|
model = modeling.BertModel(config=config)
|
|
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
|
|
```
|
|
"""
|
|
|
|
def __init__(self, config, device, use_apex=False):
|
|
super(BertModel, self).__init__(config, device)
|
|
|
|
# initilize word embedding
|
|
self.embeddings = BertEmbeddingsDialog(config, device)
|
|
|
|
# initlize the vision embedding
|
|
self.v_embeddings = BertImageEmbeddings(config)
|
|
|
|
self.encoder = BertEncoder(config)
|
|
self.t_pooler = BertTextPooler(config)
|
|
self.v_pooler = BertImagePooler(config)
|
|
|
|
self.use_apex = use_apex
|
|
|
|
self.apply(self.init_bert_weights)
|
|
|
|
def forward(
|
|
self,
|
|
input_txt,
|
|
input_imgs,
|
|
image_loc,
|
|
image_edge_indices,
|
|
image_edge_attributes,
|
|
question_edge_indices,
|
|
question_edge_attributes,
|
|
question_limits,
|
|
history_edge_indices,
|
|
history_sep_indices,
|
|
sep_indices=None,
|
|
sep_len=None,
|
|
token_type_ids=None,
|
|
attention_mask=None,
|
|
image_attention_mask=None,
|
|
co_attention_mask=None,
|
|
output_all_encoded_layers=False,
|
|
output_all_attention_masks=False,
|
|
):
|
|
if attention_mask is None:
|
|
attention_mask = torch.ones_like(input_txt)
|
|
if token_type_ids is None:
|
|
token_type_ids = torch.zeros_like(input_txt)
|
|
if image_attention_mask is None:
|
|
image_attention_mask = torch.ones(
|
|
input_imgs.size(0), input_imgs.size(1)
|
|
).type_as(input_txt)
|
|
|
|
# We create a 3D attention mask from a 2D tensor mask.
|
|
# Sizes are [batch_size, 1, 1, to_seq_length]
|
|
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
|
# this attention mask is more simple than the triangular masking of causal attention
|
|
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
|
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
|
extended_image_attention_mask = image_attention_mask.unsqueeze(1).unsqueeze(2)
|
|
|
|
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
|
# masked positions, this operation will create a tensor which is 0.0 for
|
|
# positions we want to attend and -10000.0 for masked positions.
|
|
# Since we are adding it to the raw scores before the softmax, this is
|
|
# effectively the same as removing these entirely.
|
|
if self.use_apex:
|
|
dtype = dtype=next(self.parameters()).dtype
|
|
else:
|
|
dtype = torch.float32
|
|
extended_attention_mask = extended_attention_mask.to(dtype) # fp16 compatibility
|
|
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
|
|
|
extended_image_attention_mask = extended_image_attention_mask.to(dtype) # fp16 compatibility
|
|
extended_image_attention_mask = (1.0 - extended_image_attention_mask) * -10000.0
|
|
|
|
if co_attention_mask is None:
|
|
co_attention_mask = torch.zeros(input_txt.size(0), input_imgs.size(1), input_txt.size(1)).type_as(extended_image_attention_mask)
|
|
|
|
extended_co_attention_mask = co_attention_mask.unsqueeze(1)
|
|
|
|
# extended_co_attention_mask = co_attention_mask.unsqueeze(-1)
|
|
extended_co_attention_mask = extended_co_attention_mask * 5.0
|
|
extended_co_attention_mask = extended_co_attention_mask.to(dtype) # fp16 compatibility
|
|
|
|
embedding_output = self.embeddings(input_txt, token_type_ids=token_type_ids, sep_indices=sep_indices, sep_len=sep_len)
|
|
v_embedding_output = self.v_embeddings(input_imgs, image_loc)
|
|
|
|
encoded_layers_t, encoded_layers_v, all_attention_mask, hub_feats = self.encoder(
|
|
embedding_output,
|
|
v_embedding_output,
|
|
extended_attention_mask,
|
|
extended_image_attention_mask,
|
|
image_edge_indices,
|
|
image_edge_attributes,
|
|
question_edge_indices,
|
|
question_edge_attributes,
|
|
question_limits,
|
|
history_edge_indices,
|
|
history_sep_indices,
|
|
co_attention_mask=extended_co_attention_mask,
|
|
output_all_encoded_layers=output_all_encoded_layers,
|
|
output_all_attention_masks=output_all_attention_masks,
|
|
)
|
|
|
|
sequence_output_t = encoded_layers_t[-1]
|
|
sequence_output_v = encoded_layers_v[-1]
|
|
|
|
pooled_output_t = self.t_pooler(sequence_output_t)
|
|
pooled_output_v = self.v_pooler(sequence_output_v)
|
|
|
|
if not output_all_encoded_layers:
|
|
encoded_layers_t = encoded_layers_t[-1]
|
|
encoded_layers_v = encoded_layers_v[-1]
|
|
|
|
return encoded_layers_t, encoded_layers_v, pooled_output_t, pooled_output_v, all_attention_mask, hub_feats
|
|
|
|
class BertImageEmbeddings(nn.Module):
|
|
"""Construct the embeddings from image, spatial location (omit now) and token_type embeddings.
|
|
"""
|
|
def __init__(self, config):
|
|
super(BertImageEmbeddings, self).__init__()
|
|
|
|
self.image_embeddings = nn.Linear(config.v_feature_size, config.v_hidden_size)
|
|
self.image_location_embeddings = nn.Linear(5, config.v_hidden_size)
|
|
self.LayerNorm = BertLayerNorm(config.v_hidden_size, eps=1e-12)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
def forward(self, input_ids, input_loc):
|
|
|
|
img_embeddings = self.image_embeddings(input_ids)
|
|
loc_embeddings = self.image_location_embeddings(input_loc)
|
|
embeddings = self.LayerNorm(img_embeddings+loc_embeddings)
|
|
embeddings = self.dropout(embeddings)
|
|
|
|
return embeddings
|
|
|
|
class BertForMultiModalPreTraining(BertPreTrainedModel):
|
|
"""BERT model with multi modal pre-training heads.
|
|
"""
|
|
|
|
def __init__(self, config, device, use_apex=False):
|
|
super(BertForMultiModalPreTraining, self).__init__(config, device)
|
|
|
|
self.bert = BertModel(config, device, use_apex)
|
|
self.cls = BertPreTrainingHeads(
|
|
config, self.bert.embeddings.word_embeddings.weight
|
|
)
|
|
|
|
self.apply(self.init_bert_weights)
|
|
self.predict_feature = config.predict_feature
|
|
self.loss_fct = CrossEntropyLoss(ignore_index=-1)
|
|
|
|
print("model's option for predict_feature is ", config.predict_feature)
|
|
|
|
if self.predict_feature:
|
|
self.vis_criterion = nn.MSELoss(reduction="none")
|
|
else:
|
|
self.vis_criterion = nn.KLDivLoss(reduction="none")
|
|
|
|
def forward(
|
|
self,
|
|
input_ids,
|
|
image_feat,
|
|
image_loc,
|
|
image_edge_indices,
|
|
image_edge_attributes,
|
|
question_edge_indices,
|
|
question_edge_attributes,
|
|
question_limits,
|
|
history_edge_indices,
|
|
history_sep_indices,
|
|
sep_indices=None,
|
|
sep_len=None,
|
|
token_type_ids=None,
|
|
attention_mask=None,
|
|
image_attention_mask=None,
|
|
masked_lm_labels=None,
|
|
image_label=None,
|
|
image_target = None,
|
|
next_sentence_label=None,
|
|
output_all_attention_masks=False
|
|
):
|
|
|
|
# in this model, we first embed the images.
|
|
sequence_output_t, sequence_output_v, pooled_output_t, pooled_output_v, all_attention_mask, hub_nodes = self.bert(
|
|
input_ids,
|
|
image_feat,
|
|
image_loc,
|
|
image_edge_indices,
|
|
image_edge_attributes,
|
|
question_edge_indices,
|
|
question_edge_attributes,
|
|
question_limits,
|
|
history_edge_indices,
|
|
history_sep_indices,
|
|
sep_indices=sep_indices,
|
|
sep_len=sep_len,
|
|
token_type_ids=token_type_ids,
|
|
attention_mask=attention_mask,
|
|
image_attention_mask=image_attention_mask,
|
|
output_all_encoded_layers=False,
|
|
output_all_attention_masks=output_all_attention_masks
|
|
)
|
|
|
|
prediction_scores_t, prediction_scores_v, seq_relationship_score = self.cls(
|
|
sequence_output_t, sequence_output_v, pooled_output_t, pooled_output_v
|
|
)
|
|
if masked_lm_labels is not None and next_sentence_label is not None and image_target is not None:
|
|
|
|
# prediction_scores_v = prediction_scores_v[:, 1:]
|
|
if self.predict_feature:
|
|
img_loss = self.vis_criterion(prediction_scores_v, image_target)
|
|
masked_img_loss = torch.sum(
|
|
img_loss * (image_label == 1).unsqueeze(2).float()
|
|
) / max(torch.sum((image_label == 1).unsqueeze(2).expand_as(img_loss)),1)
|
|
|
|
else:
|
|
img_loss = self.vis_criterion(
|
|
F.log_softmax(prediction_scores_v, dim=2), image_target
|
|
)
|
|
masked_img_loss = torch.sum(
|
|
img_loss * (image_label == 1).unsqueeze(2).float()
|
|
) / max(torch.sum((image_label == 1)), 0)
|
|
|
|
# masked_img_loss = torch.sum(img_loss) / (img_loss.shape[0] * img_loss.shape[1])
|
|
masked_lm_loss = self.loss_fct(
|
|
prediction_scores_t.view(-1, self.config.vocab_size),
|
|
masked_lm_labels.view(-1),
|
|
)
|
|
next_sentence_loss = self.loss_fct(
|
|
seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)
|
|
)
|
|
# total_loss = masked_lm_loss + next_sentence_loss + masked_img_loss
|
|
return masked_lm_loss.unsqueeze(0), masked_img_loss.unsqueeze(0), next_sentence_loss.unsqueeze(0), sequence_output_t, prediction_scores_t, seq_relationship_score, hub_nodes
|
|
else:
|
|
return prediction_scores_t, prediction_scores_v, seq_relationship_score, sequence_output_t, all_attention_mask, hub_nodes
|
|
|
|
def get_text_embedding(
|
|
self,
|
|
input_ids,
|
|
image_feat,
|
|
image_loc,
|
|
sep_indices=None,
|
|
sep_len=None,
|
|
token_type_ids=None,
|
|
attention_mask=None,
|
|
image_attention_mask=None,
|
|
output_all_attention_masks=False
|
|
):
|
|
|
|
# in this model, we first embed the images.
|
|
sequence_output_t, sequence_output_v, pooled_output_t, pooled_output_v, all_attention_mask = self.bert(
|
|
input_ids,
|
|
image_feat,
|
|
image_loc,
|
|
sep_indices=sep_indices,
|
|
sep_len=sep_len,
|
|
token_type_ids=token_type_ids,
|
|
attention_mask=attention_mask,
|
|
image_attention_mask=image_attention_mask,
|
|
output_all_encoded_layers=False,
|
|
output_all_attention_masks=output_all_attention_masks
|
|
)
|
|
|
|
return sequence_output_t # [batch_size, num_words, 768]
|
|
|
|
|
|
class VILBertForVLTasks(BertPreTrainedModel):
|
|
def __init__(self, config, device, num_labels, use_apex=False, dropout_prob=0.1, default_gpu=True):
|
|
super(VILBertForVLTasks, self).__init__(config)
|
|
self.num_labels = num_labels
|
|
self.bert = BertModel(config, device, use_apex)
|
|
self.use_apex = use_apex
|
|
self.dropout = nn.Dropout(dropout_prob)
|
|
self.cls = BertPreTrainingHeads(
|
|
config, self.bert.embeddings.word_embeddings.weight
|
|
)
|
|
self.vil_prediction = SimpleClassifier(config.bi_hidden_size, config.bi_hidden_size*2, num_labels, 0.5)
|
|
# self.vil_prediction = nn.Linear(config.bi_hidden_size, num_labels)
|
|
self.vil_logit = nn.Linear(config.bi_hidden_size, 1)
|
|
self.vision_logit = nn.Linear(config.v_hidden_size, 1)
|
|
self.linguisic_logit = nn.Linear(config.hidden_size, 1)
|
|
self.fusion_method = config.fusion_method
|
|
self.apply(self.init_bert_weights)
|
|
|
|
def forward(
|
|
self,
|
|
input_txt,
|
|
input_imgs,
|
|
image_loc,
|
|
token_type_ids=None,
|
|
attention_mask=None,
|
|
image_attention_mask=None,
|
|
co_attention_mask=None,
|
|
output_all_encoded_layers=False,
|
|
):
|
|
sequence_output_t, sequence_output_v, pooled_output_t, pooled_output_v, _ = self.bert(
|
|
input_txt,
|
|
input_imgs,
|
|
image_loc,
|
|
token_type_ids,
|
|
attention_mask,
|
|
image_attention_mask,
|
|
co_attention_mask,
|
|
output_all_encoded_layers=False,
|
|
)
|
|
|
|
vil_prediction = 0
|
|
vil_logit = 0
|
|
vil_binary_prediction = 0
|
|
vision_prediction = 0
|
|
vision_logit = 0
|
|
linguisic_prediction = 0
|
|
linguisic_logit = 0
|
|
|
|
linguisic_prediction, vision_prediction, vil_binary_prediction = self.cls(
|
|
sequence_output_t, sequence_output_v, pooled_output_t, pooled_output_v
|
|
)
|
|
|
|
if self.fusion_method == 'sum':
|
|
pooled_output = self.dropout(pooled_output_t + pooled_output_v)
|
|
elif self.fusion_method == 'mul':
|
|
pooled_output = self.dropout(pooled_output_t * pooled_output_v)
|
|
else:
|
|
assert False
|
|
|
|
vil_prediction = self.vil_prediction(pooled_output)
|
|
vil_logit = self.vil_logit(pooled_output)
|
|
if self.use_apex:
|
|
dtype = next(self.parameters()).dtype
|
|
else:
|
|
dtype = torch.float32
|
|
vision_logit = self.vision_logit(self.dropout(sequence_output_v)) + ((1.0 - image_attention_mask)* -10000.0).unsqueeze(2).to(dtype)
|
|
linguisic_logit = self.linguisic_logit(self.dropout(sequence_output_t))
|
|
|
|
return vil_prediction, vil_logit, vil_binary_prediction, vision_prediction, vision_logit, linguisic_prediction, linguisic_logit
|
|
|
|
class SimpleClassifier(nn.Module):
|
|
def __init__(self, in_dim, hid_dim, out_dim, dropout):
|
|
super(SimpleClassifier, self).__init__()
|
|
layers = [
|
|
weight_norm(nn.Linear(in_dim, hid_dim), dim=None),
|
|
nn.ReLU(),
|
|
nn.Dropout(dropout, inplace=True),
|
|
weight_norm(nn.Linear(hid_dim, out_dim), dim=None)
|
|
]
|
|
self.main = nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
logits = self.main(x)
|