VDGR/utils/image_features_reader.py
2023-10-25 15:38:09 +02:00

192 lines
9.3 KiB
Python

from typing import List
import csv
import h5py
import numpy as np
import copy
import pickle
import lmdb # install lmdb by "pip install lmdb"
import base64
import pdb
import os
class ImageFeaturesH5Reader(object):
"""
A reader for H5 files containing pre-extracted image features. A typical
H5 file is expected to have a column named "image_id", and another column
named "features".
Example of an H5 file:
```
faster_rcnn_bottomup_features.h5
|--- "image_id" [shape: (num_images, )]
|--- "features" [shape: (num_images, num_proposals, feature_size)]
+--- .attrs ("split", "train")
```
Parameters
----------
features_h5path : str
Path to an H5 file containing COCO train / val image features.
in_memory : bool
Whether to load the whole H5 file in memory. Beware, these files are
sometimes tens of GBs in size. Set this to true if you have sufficient
RAM - trade-off between speed and memory.
"""
def __init__(self, features_path: str, scene_graph_path: str, in_memory: bool = False):
self.features_path = features_path
self.scene_graph_path = scene_graph_path
self._in_memory = in_memory
self.env = lmdb.open(self.features_path, max_readers=1, readonly=True,
lock=False, readahead=False, meminit=False)
with self.env.begin(write=False) as txn:
self._image_ids = pickle.loads(txn.get('keys'.encode()))
self.features = [None] * len(self._image_ids)
self.num_boxes = [None] * len(self._image_ids)
self.boxes = [None] * len(self._image_ids)
self.boxes_ori = [None] * len(self._image_ids)
self.cls_prob = [None] * len(self._image_ids)
self.edge_indexes = [None] * len(self._image_ids)
self.edge_attributes = [None] * len(self._image_ids)
def __len__(self):
return len(self._image_ids)
def __getitem__(self, image_id):
image_id = str(image_id).encode()
index = self._image_ids.index(image_id)
if self._in_memory:
# Load features during first epoch, all not loaded together as it
# has a slow start.
if self.features[index] is not None:
features = self.features[index]
num_boxes = self.num_boxes[index]
image_location = self.boxes[index]
image_location_ori = self.boxes_ori[index]
cls_prob = self.cls_prob[index]
edge_indexes = self.edge_indexes[index]
edge_attributes = self.edge_attributes[index]
else:
with self.env.begin(write=False) as txn:
item = pickle.loads(txn.get(image_id))
image_id = item['image_id']
image_h = int(item['image_h'])
image_w = int(item['image_w'])
num_boxes = int(item['num_boxes'])
features = np.frombuffer(base64.b64decode(item["features"]), dtype=np.float32).reshape(num_boxes, 2048)
boxes = np.frombuffer(base64.b64decode(item['boxes']), dtype=np.float32).reshape(num_boxes, 4)
cls_prob = np.frombuffer(base64.b64decode(item['cls_prob']), dtype=np.float32).reshape(num_boxes, 1601)
# add an extra row at the top for the <IMG> tokens
g_cls_prob = np.zeros(1601, dtype=np.float32)
g_cls_prob[0] = 1
cls_prob = np.concatenate([np.expand_dims(g_cls_prob,axis=0), cls_prob], axis=0)
self.cls_prob[index] = cls_prob
g_feat = np.sum(features, axis=0) / num_boxes
num_boxes = num_boxes + 1
features = np.concatenate([np.expand_dims(g_feat, axis=0), features], axis=0)
self.features[index] = features
image_location = np.zeros((boxes.shape[0], 5), dtype=np.float32)
image_location[:,:4] = boxes
image_location[:,4] = (image_location[:,3] - image_location[:,1]) * (image_location[:,2] - image_location[:,0]) / (float(image_w) * float(image_h))
image_location_ori = copy.deepcopy(image_location)
image_location[:,0] = image_location[:,0] / float(image_w)
image_location[:,1] = image_location[:,1] / float(image_h)
image_location[:,2] = image_location[:,2] / float(image_w)
image_location[:,3] = image_location[:,3] / float(image_h)
g_location = np.array([0,0,1,1,1])
image_location = np.concatenate([np.expand_dims(g_location, axis=0), image_location], axis=0)
self.boxes[index] = image_location
g_location_ori = np.array([0, 0, image_w, image_h, image_w*image_h])
image_location_ori = np.concatenate([np.expand_dims(g_location_ori, axis=0), image_location_ori], axis=0)
self.boxes_ori[index] = image_location_ori
self.num_boxes[index] = num_boxes
# load the scene graph data
pth = os.path.join(self.scene_graph_path, f'{image_id}.pkl')
with open(pth, 'rb') as f:
graph_data = pickle.load(f)
edge_indexes = []
edge_attributes = []
for e_idx, e_attr in graph_data:
edge_indexes.append(e_idx)
# get one-hot-encoding of the edges
e_attr_one_hot = np.zeros((12,), dtype=np.float32) # 12 = 11 rels + hub-node rel
e_attr_one_hot[e_attr] = 1.0
edge_attributes.append(e_attr_one_hot)
edge_indexes = np.array(edge_indexes, dtype=np.float64).transpose(1, 0)
edge_attributes = np.stack(edge_attributes, axis=0)
self.edge_indexes[index] = edge_indexes
self.edge_attributes[index] = edge_attributes
else:
# Read chunk from file everytime if not loaded in memory.
with self.env.begin(write=False) as txn:
item = pickle.loads(txn.get(image_id))
image_id = item['image_id']
image_h = int(item['image_h'])
image_w = int(item['image_w'])
num_boxes = int(item['num_boxes'])
cls_prob = np.frombuffer(base64.b64decode(item['cls_prob']), dtype=np.float32).reshape(num_boxes, 1601)
# add an extra row at the top for the <IMG> tokens
g_cls_prob = np.zeros(1601, dtype=np.float32)
g_cls_prob[0] = 1
cls_prob = np.concatenate([np.expand_dims(g_cls_prob,axis=0), cls_prob], axis=0)
features = np.frombuffer(base64.b64decode(item["features"]), dtype=np.float32).reshape(num_boxes, 2048)
boxes = np.frombuffer(base64.b64decode(item['boxes']), dtype=np.float32).reshape(num_boxes, 4)
g_feat = np.sum(features, axis=0) / num_boxes
num_boxes = num_boxes + 1
features = np.concatenate([np.expand_dims(g_feat, axis=0), features], axis=0)
image_location = np.zeros((boxes.shape[0], 5), dtype=np.float32)
image_location[:,:4] = boxes
image_location[:,4] = (image_location[:,3] - image_location[:,1]) * (image_location[:,2] - image_location[:,0]) / (float(image_w) * float(image_h))
image_location_ori = copy.deepcopy(image_location)
image_location[:,0] = image_location[:,0] / float(image_w)
image_location[:,1] = image_location[:,1] / float(image_h)
image_location[:,2] = image_location[:,2] / float(image_w)
image_location[:,3] = image_location[:,3] / float(image_h)
g_location = np.array([0,0,1,1,1])
image_location = np.concatenate([np.expand_dims(g_location, axis=0), image_location], axis=0)
g_location_ori = np.array([0,0,image_w,image_h,image_w*image_h])
image_location_ori = np.concatenate([np.expand_dims(g_location_ori, axis=0), image_location_ori], axis=0)
# load the scene graph data
pth = os.path.join(self.scene_graph_path, f'{image_id}.pkl')
with open(pth, 'rb') as f:
graph_data = pickle.load(f)
edge_indexes = []
edge_attributes = []
for e_idx, e_attr in graph_data:
edge_indexes.append(e_idx)
# get one-hot-encoding of the edges
e_attr_one_hot = np.zeros((12,), dtype=np.float32) # 12 = 11 rels + hub-node rel
e_attr_one_hot[e_attr] = 1.0
edge_attributes.append(e_attr_one_hot)
edge_indexes = np.array(edge_indexes, dtype=np.float64).transpose(1, 0)
edge_attributes = np.stack(edge_attributes, axis=0)
return features, num_boxes, image_location, image_location_ori, cls_prob, edge_indexes, edge_attributes
def keys(self) -> List[int]:
return self._image_ids
def set_keys(self, new_ids: List[str]):
self._image_ids = list(map(lambda _id: _id.encode('ascii') ,new_ids))