615 lines
32 KiB
Python
615 lines
32 KiB
Python
import torch
|
|
import os
|
|
import numpy as np
|
|
import random
|
|
import pickle
|
|
|
|
import sys
|
|
sys.path.insert(0, os.path.dirname(os.path.dirname(__file__)))
|
|
|
|
from utils.data_utils import encode_input, encode_input_with_mask, encode_image_input
|
|
from dataloader.dataloader_base import DatasetBase
|
|
|
|
|
|
class VisdialDataset(DatasetBase):
|
|
|
|
def __init__(self, config):
|
|
super(VisdialDataset, self).__init__(config)
|
|
|
|
def __getitem__(self, index):
|
|
MAX_SEQ_LEN = self.config['max_seq_len']
|
|
cur_data = None
|
|
if self._split == 'train':
|
|
cur_data = self.visdial_data_train['data']
|
|
ques_adj_matrices_dir = os.path.join(self.config['visdial_question_adj_matrices'], 'train')
|
|
hist_adj_matrices_dir = os.path.join(self.config['visdial_history_adj_matrices'], 'train')
|
|
|
|
elif self._split == 'val':
|
|
cur_data = self.visdial_data_val['data']
|
|
ques_adj_matrices_dir = os.path.join(self.config['visdial_question_adj_matrices'], 'val')
|
|
hist_adj_matrices_dir = os.path.join(self.config['visdial_history_adj_matrices'], 'val')
|
|
|
|
else:
|
|
cur_data = self.visdial_data_test['data']
|
|
ques_adj_matrices_dir = os.path.join(self.config['visdial_question_adj_matrices'], 'test')
|
|
hist_adj_matrices_dir = os.path.join(self.config['visdial_history_adj_matrices'], 'test')
|
|
|
|
if self.config['visdial_version'] == 0.9:
|
|
ques_adj_matrices_dir = os.path.join(self.config['visdial_question_adj_matrices'], 'train')
|
|
hist_adj_matrices_dir = os.path.join(self.config['visdial_history_adj_matrices'], 'train')
|
|
|
|
self.num_bad_samples = 0
|
|
# number of options to score on
|
|
num_options = self.num_options
|
|
assert num_options > 1 and num_options <= 100
|
|
num_dialog_rounds = 10
|
|
|
|
dialog = cur_data['dialogs'][index]
|
|
cur_questions = cur_data['questions']
|
|
cur_answers = cur_data['answers']
|
|
img_id = dialog['image_id']
|
|
graph_idx = dialog.get('dialog_idx', index)
|
|
|
|
if self._split == 'train':
|
|
# caption
|
|
sent = dialog['caption'].split(' ')
|
|
sentences = ['[CLS]']
|
|
tot_len = 1 # for the CLS token
|
|
sentence_map = [0] # for the CLS token
|
|
sentence_count = 0
|
|
speakers = [0]
|
|
|
|
tokenized_sent, sentences, tot_len, sentence_count, sentence_map, speakers = \
|
|
self.tokenize_utterance(sent, sentences, tot_len, sentence_count, sentence_map, speakers)
|
|
|
|
utterances = [[tokenized_sent]]
|
|
utterances_random = [[tokenized_sent]]
|
|
|
|
for rnd, utterance in enumerate(dialog['dialog']):
|
|
cur_rnd_utterance = utterances[-1].copy()
|
|
cur_rnd_utterance_random = utterances[-1].copy()
|
|
|
|
# question
|
|
sent = cur_questions[utterance['question']].split(' ')
|
|
tokenized_sent, sentences, tot_len, sentence_count, sentence_map, speakers = \
|
|
self.tokenize_utterance(sent, sentences, tot_len, sentence_count, sentence_map, speakers)
|
|
|
|
cur_rnd_utterance.append(tokenized_sent)
|
|
cur_rnd_utterance_random.append(tokenized_sent)
|
|
|
|
# answer
|
|
sent = cur_answers[utterance['answer']].split(' ')
|
|
tokenized_sent, sentences, tot_len, sentence_count, sentence_map, speakers = \
|
|
self.tokenize_utterance(sent, sentences, tot_len, sentence_count, sentence_map, speakers)
|
|
cur_rnd_utterance.append(tokenized_sent)
|
|
|
|
utterances.append(cur_rnd_utterance)
|
|
|
|
# randomly select one random utterance in that round
|
|
num_inds = len(utterance['answer_options'])
|
|
gt_option_ind = utterance['gt_index']
|
|
|
|
negative_samples = []
|
|
|
|
for _ in range(self.config["num_negative_samples"]):
|
|
|
|
all_inds = list(range(100))
|
|
all_inds.remove(gt_option_ind)
|
|
all_inds = all_inds[:(num_options-1)]
|
|
tokenized_random_utterance = None
|
|
option_ind = None
|
|
|
|
while len(all_inds):
|
|
option_ind = random.choice(all_inds)
|
|
tokenized_random_utterance = self.tokenizer.convert_tokens_to_ids(cur_answers[utterance['answer_options'][option_ind]].split(' '))
|
|
# the 1 here is for the sep token at the end of each utterance
|
|
if(MAX_SEQ_LEN >= (tot_len + len(tokenized_random_utterance) + 1)):
|
|
break
|
|
else:
|
|
all_inds.remove(option_ind)
|
|
if len(all_inds) == 0:
|
|
# all the options exceed the max len. Truncate the last utterance in this case.
|
|
tokenized_random_utterance = tokenized_random_utterance[:len(tokenized_sent)]
|
|
t = cur_rnd_utterance_random.copy()
|
|
t.append(tokenized_random_utterance)
|
|
negative_samples.append(t)
|
|
|
|
utterances_random.append(negative_samples)
|
|
|
|
# removing the caption in the beginning
|
|
utterances = utterances[1:]
|
|
utterances_random = utterances_random[1:]
|
|
assert len(utterances) == len(utterances_random) == num_dialog_rounds
|
|
assert tot_len <= MAX_SEQ_LEN, '{} {} tot_len = {} > max_seq_len'.format(
|
|
self._split, index, tot_len
|
|
)
|
|
|
|
tokens_all = []
|
|
question_limits_all = []
|
|
question_edge_indices_all = []
|
|
question_edge_attributes_all = []
|
|
history_edge_indices_all = []
|
|
history_sep_indices_all = []
|
|
mask_all = []
|
|
segments_all = []
|
|
sep_indices_all = []
|
|
next_labels_all = []
|
|
hist_len_all = []
|
|
|
|
# randomly pick several rounds to train
|
|
pos_rounds = sorted(random.sample(range(num_dialog_rounds), self.config['sequences_per_image'] // 2), reverse=True)
|
|
neg_rounds = sorted(random.sample(range(num_dialog_rounds), self.config['sequences_per_image'] // 2), reverse=True)
|
|
|
|
tokens_all_rnd = []
|
|
question_limits_all_rnd = []
|
|
mask_all_rnd = []
|
|
segments_all_rnd = []
|
|
sep_indices_all_rnd = []
|
|
next_labels_all_rnd = []
|
|
hist_len_all_rnd = []
|
|
|
|
for j in pos_rounds:
|
|
context = utterances[j]
|
|
context, start_segment = self.pruneRounds(context, self.config['visdial_tot_rounds'])
|
|
if j == pos_rounds[0]: # dialog with positive label and max rounds
|
|
tokens, segments, sep_indices, mask, input_mask, start_question, end_question = encode_input_with_mask(context, start_segment, self.CLS,
|
|
self.SEP, self.MASK, max_seq_len=MAX_SEQ_LEN, mask_prob=self.config["mask_prob"])
|
|
else:
|
|
tokens, segments, sep_indices, mask, start_question, end_question = encode_input(context, start_segment, self.CLS,
|
|
self.SEP, self.MASK, max_seq_len=MAX_SEQ_LEN, mask_prob=self.config["mask_prob"])
|
|
tokens_all_rnd.append(tokens)
|
|
question_limits_all_rnd.append(torch.tensor([start_question, end_question]))
|
|
mask_all_rnd.append(mask)
|
|
sep_indices_all_rnd.append(sep_indices)
|
|
next_labels_all_rnd.append(torch.LongTensor([0]))
|
|
segments_all_rnd.append(segments)
|
|
hist_len_all_rnd.append(torch.LongTensor([len(context)-1]))
|
|
|
|
tokens_all.append(torch.cat(tokens_all_rnd,0).unsqueeze(0))
|
|
mask_all.append(torch.cat(mask_all_rnd,0).unsqueeze(0))
|
|
question_limits_all.extend(question_limits_all_rnd)
|
|
segments_all.append(torch.cat(segments_all_rnd, 0).unsqueeze(0))
|
|
sep_indices_all.append(torch.cat(sep_indices_all_rnd, 0).unsqueeze(0))
|
|
next_labels_all.append(torch.cat(next_labels_all_rnd, 0).unsqueeze(0))
|
|
hist_len_all.append(torch.cat(hist_len_all_rnd,0).unsqueeze(0))
|
|
|
|
assert len(pos_rounds) == 1
|
|
question_graphs = pickle.load(
|
|
open(os.path.join(ques_adj_matrices_dir, f'{graph_idx}.pkl'), 'rb')
|
|
)
|
|
|
|
question_graph_pos = question_graphs[pos_rounds[0]]
|
|
question_edge_index_pos = []
|
|
question_edge_attribute_pos = []
|
|
for edge_idx, edge_attr in question_graph_pos:
|
|
question_edge_index_pos.append(edge_idx)
|
|
edge_attr_one_hot = np.zeros((len(self.parse_vocab) + 1,), dtype=np.float32)
|
|
edge_attr_one_hot[self.parse_vocab.get(edge_attr, len(self.parse_vocab))] = 1.0
|
|
question_edge_attribute_pos.append(edge_attr_one_hot)
|
|
|
|
question_edge_index_pos = np.array(question_edge_index_pos, dtype=np.float64)
|
|
question_edge_attribute_pos = np.stack(question_edge_attribute_pos, axis=0)
|
|
|
|
question_edge_indices_all.append(
|
|
torch.from_numpy(question_edge_index_pos).t().long().contiguous()
|
|
)
|
|
|
|
question_edge_attributes_all.append(
|
|
torch.from_numpy(question_edge_attribute_pos)
|
|
)
|
|
|
|
history_edge_indices = pickle.load(
|
|
open(os.path.join(hist_adj_matrices_dir, f'{graph_idx}.pkl'), 'rb')
|
|
)
|
|
|
|
history_edge_indices_all.append(
|
|
torch.tensor(history_edge_indices[pos_rounds[0]]).t().long().contiguous()
|
|
)
|
|
# Get the [SEP] tokens that will represent the history graph node features
|
|
hist_idx_pos = [i * 2 for i in range(pos_rounds[0] + 1)]
|
|
sep_indices = sep_indices.squeeze(0).numpy()
|
|
history_sep_indices_all.append(torch.from_numpy(sep_indices[hist_idx_pos]))
|
|
|
|
if len(neg_rounds) > 0:
|
|
tokens_all_rnd = []
|
|
question_limits_all_rnd = []
|
|
mask_all_rnd = []
|
|
segments_all_rnd = []
|
|
sep_indices_all_rnd = []
|
|
next_labels_all_rnd = []
|
|
hist_len_all_rnd = []
|
|
|
|
for j in neg_rounds:
|
|
|
|
negative_samples = utterances_random[j]
|
|
for context_random in negative_samples:
|
|
context_random, start_segment = self.pruneRounds(context_random, self.config['visdial_tot_rounds'])
|
|
tokens_random, segments_random, sep_indices_random, mask_random, start_question, end_question = encode_input(context_random, start_segment, self.CLS,
|
|
self.SEP, self.MASK, max_seq_len=MAX_SEQ_LEN, mask_prob=self.config["mask_prob"])
|
|
tokens_all_rnd.append(tokens_random)
|
|
question_limits_all_rnd.append(torch.tensor([start_question, end_question]))
|
|
mask_all_rnd.append(mask_random)
|
|
sep_indices_all_rnd.append(sep_indices_random)
|
|
next_labels_all_rnd.append(torch.LongTensor([1]))
|
|
segments_all_rnd.append(segments_random)
|
|
hist_len_all_rnd.append(torch.LongTensor([len(context_random)-1]))
|
|
|
|
tokens_all.append(torch.cat(tokens_all_rnd,0).unsqueeze(0))
|
|
mask_all.append(torch.cat(mask_all_rnd,0).unsqueeze(0))
|
|
question_limits_all.extend(question_limits_all_rnd)
|
|
segments_all.append(torch.cat(segments_all_rnd, 0).unsqueeze(0))
|
|
sep_indices_all.append(torch.cat(sep_indices_all_rnd, 0).unsqueeze(0))
|
|
next_labels_all.append(torch.cat(next_labels_all_rnd, 0).unsqueeze(0))
|
|
hist_len_all.append(torch.cat(hist_len_all_rnd,0).unsqueeze(0))
|
|
|
|
assert len(neg_rounds) == 1
|
|
|
|
question_graph_neg = question_graphs[neg_rounds[0]]
|
|
question_edge_index_neg = []
|
|
question_edge_attribute_neg = []
|
|
for edge_idx, edge_attr in question_graph_neg:
|
|
question_edge_index_neg.append(edge_idx)
|
|
edge_attr_one_hot = np.zeros((len(self.parse_vocab) + 1,), dtype=np.float32)
|
|
edge_attr_one_hot[self.parse_vocab.get(edge_attr, len(self.parse_vocab))] = 1.0
|
|
question_edge_attribute_neg.append(edge_attr_one_hot)
|
|
|
|
question_edge_index_neg = np.array(question_edge_index_neg, dtype=np.float64)
|
|
question_edge_attribute_neg = np.stack(question_edge_attribute_neg, axis=0)
|
|
|
|
question_edge_indices_all.append(
|
|
torch.from_numpy(question_edge_index_neg).t().long().contiguous()
|
|
)
|
|
|
|
question_edge_attributes_all.append(
|
|
torch.from_numpy(question_edge_attribute_neg)
|
|
)
|
|
|
|
history_edge_indices_all.append(
|
|
torch.tensor(history_edge_indices[neg_rounds[0]]).t().long().contiguous()
|
|
)
|
|
|
|
# Get the [SEP] tokens that will represent the history graph node features
|
|
hist_idx_neg = [i * 2 for i in range(neg_rounds[0] + 1)]
|
|
sep_indices_random = sep_indices_random.squeeze(0).numpy()
|
|
history_sep_indices_all.append(torch.from_numpy(sep_indices_random[hist_idx_neg]))
|
|
|
|
tokens_all = torch.cat(tokens_all, 0) # [2, num_pos, max_len]
|
|
question_limits_all = torch.stack(question_limits_all, 0) # [2, 2]
|
|
mask_all = torch.cat(mask_all,0)
|
|
segments_all = torch.cat(segments_all, 0)
|
|
sep_indices_all = torch.cat(sep_indices_all, 0)
|
|
next_labels_all = torch.cat(next_labels_all, 0)
|
|
hist_len_all = torch.cat(hist_len_all, 0)
|
|
input_mask_all = torch.LongTensor(input_mask) # [max_len]
|
|
|
|
item = {}
|
|
|
|
item['tokens'] = tokens_all
|
|
item['question_limits'] = question_limits_all
|
|
item['question_edge_indices'] = question_edge_indices_all
|
|
item['question_edge_attributes'] = question_edge_attributes_all
|
|
|
|
item['history_edge_indices'] = history_edge_indices_all
|
|
item['history_sep_indices'] = history_sep_indices_all
|
|
item['segments'] = segments_all
|
|
item['sep_indices'] = sep_indices_all
|
|
item['mask'] = mask_all
|
|
item['next_sentence_labels'] = next_labels_all
|
|
item['hist_len'] = hist_len_all
|
|
item['input_mask'] = input_mask_all
|
|
|
|
# get image features
|
|
if not self.config['dataloader_text_only']:
|
|
features, num_boxes, boxes, _ , image_target, image_edge_indexes, image_edge_attributes = self._image_features_reader[img_id]
|
|
features, spatials, image_mask, image_target, image_label = encode_image_input(features, num_boxes, boxes, image_target, max_regions=self._max_region_num)
|
|
else:
|
|
features = spatials = image_mask = image_target = image_label = torch.tensor([0])
|
|
|
|
elif self._split == 'val':
|
|
gt_relevance = None
|
|
gt_option_inds = []
|
|
options_all = []
|
|
|
|
# caption
|
|
sent = dialog['caption'].split(' ')
|
|
sentences = ['[CLS]']
|
|
tot_len = 1 # for the CLS token
|
|
sentence_map = [0] # for the CLS token
|
|
sentence_count = 0
|
|
speakers = [0]
|
|
|
|
tokenized_sent, sentences, tot_len, sentence_count, sentence_map, speakers = \
|
|
self.tokenize_utterance(sent, sentences, tot_len, sentence_count, sentence_map, speakers)
|
|
utterances = [[tokenized_sent]]
|
|
|
|
for rnd, utterance in enumerate(dialog['dialog']):
|
|
cur_rnd_utterance = utterances[-1].copy()
|
|
|
|
# question
|
|
sent = cur_questions[utterance['question']].split(' ')
|
|
tokenized_sent, sentences, tot_len, sentence_count, sentence_map, speakers = \
|
|
self.tokenize_utterance(sent, sentences, tot_len, sentence_count, sentence_map, speakers)
|
|
|
|
cur_rnd_utterance.append(tokenized_sent)
|
|
|
|
# current round
|
|
gt_option_ind = utterance['gt_index']
|
|
# first select gt option id, then choose the first num_options inds
|
|
option_inds = []
|
|
option_inds.append(gt_option_ind)
|
|
all_inds = list(range(100))
|
|
all_inds.remove(gt_option_ind)
|
|
all_inds = all_inds[:(num_options-1)]
|
|
option_inds.extend(all_inds)
|
|
gt_option_inds.append(0)
|
|
cur_rnd_options = []
|
|
answer_options = [utterance['answer_options'][k] for k in option_inds]
|
|
assert len(answer_options) == len(option_inds) == num_options
|
|
assert answer_options[0] == utterance['answer']
|
|
|
|
# for evaluation of all options and dense relevance
|
|
if self.visdial_data_val_dense:
|
|
if rnd == self.visdial_data_val_dense[index]['round_id'] - 1:
|
|
# only 1 round has gt_relevance for each example
|
|
if 'relevance' in self.visdial_data_val_dense[index]:
|
|
gt_relevance = torch.Tensor(self.visdial_data_val_dense[index]['relevance'])
|
|
else:
|
|
gt_relevance = torch.Tensor(self.visdial_data_val_dense[index]['gt_relevance'])
|
|
# shuffle based on new indices
|
|
gt_relevance = gt_relevance[torch.LongTensor(option_inds)]
|
|
else:
|
|
gt_relevance = -1
|
|
|
|
for answer_option in answer_options:
|
|
cur_rnd_cur_option = cur_rnd_utterance.copy()
|
|
cur_rnd_cur_option.append(self.tokenizer.convert_tokens_to_ids(cur_answers[answer_option].split(' ')))
|
|
cur_rnd_options.append(cur_rnd_cur_option)
|
|
|
|
# answer
|
|
sent = cur_answers[utterance['answer']].split(' ')
|
|
tokenized_sent, sentences, tot_len, sentence_count, sentence_map, speakers = \
|
|
self.tokenize_utterance(sent, sentences, tot_len, sentence_count, sentence_map, speakers)
|
|
cur_rnd_utterance.append(tokenized_sent)
|
|
|
|
utterances.append(cur_rnd_utterance)
|
|
options_all.append(cur_rnd_options)
|
|
|
|
# encode the input and create batch x 10 x 100 * max_len arrays (batch x num_rounds x num_options)
|
|
tokens_all = []
|
|
question_limits_all = []
|
|
mask_all = []
|
|
segments_all = []
|
|
sep_indices_all = []
|
|
hist_len_all = []
|
|
history_sep_indices_all = []
|
|
|
|
for rnd, cur_rnd_options in enumerate(options_all):
|
|
|
|
tokens_all_rnd = []
|
|
mask_all_rnd = []
|
|
segments_all_rnd = []
|
|
sep_indices_all_rnd = []
|
|
hist_len_all_rnd = []
|
|
|
|
for j, cur_rnd_option in enumerate(cur_rnd_options):
|
|
|
|
cur_rnd_option, start_segment = self.pruneRounds(cur_rnd_option, self.config['visdial_tot_rounds'])
|
|
if rnd == len(options_all) - 1 and j == 0: # gt dialog
|
|
tokens, segments, sep_indices, mask, input_mask, start_question, end_question = encode_input_with_mask(cur_rnd_option, start_segment, self.CLS,
|
|
self.SEP, self.MASK, max_seq_len=MAX_SEQ_LEN, mask_prob=0)
|
|
else:
|
|
tokens, segments, sep_indices, mask, start_question, end_question = encode_input(cur_rnd_option, start_segment,self.CLS,
|
|
self.SEP, self.MASK ,max_seq_len=MAX_SEQ_LEN, mask_prob=0)
|
|
|
|
tokens_all_rnd.append(tokens)
|
|
mask_all_rnd.append(mask)
|
|
segments_all_rnd.append(segments)
|
|
sep_indices_all_rnd.append(sep_indices)
|
|
hist_len_all_rnd.append(torch.LongTensor([len(cur_rnd_option)-1]))
|
|
|
|
question_limits_all.append(torch.tensor([start_question, end_question]).unsqueeze(0).repeat(100, 1))
|
|
tokens_all.append(torch.cat(tokens_all_rnd,0).unsqueeze(0))
|
|
mask_all.append(torch.cat(mask_all_rnd,0).unsqueeze(0))
|
|
segments_all.append(torch.cat(segments_all_rnd,0).unsqueeze(0))
|
|
sep_indices_all.append(torch.cat(sep_indices_all_rnd,0).unsqueeze(0))
|
|
hist_len_all.append(torch.cat(hist_len_all_rnd,0).unsqueeze(0))
|
|
# Get the [SEP] tokens that will represent the history graph node features
|
|
# It will be the same for all answer candidates as the history does not change
|
|
# for each answer
|
|
hist_idx = [i * 2 for i in range(rnd + 1)]
|
|
history_sep_indices_all.extend(sep_indices.squeeze(0)[hist_idx].contiguous() for _ in range(100))
|
|
|
|
tokens_all = torch.cat(tokens_all, 0) # [10, 100, max_len]
|
|
mask_all = torch.cat(mask_all, 0)
|
|
segments_all = torch.cat(segments_all, 0)
|
|
sep_indices_all = torch.cat(sep_indices_all, 0)
|
|
hist_len_all = torch.cat(hist_len_all, 0)
|
|
input_mask_all = torch.LongTensor(input_mask) # [max_len]
|
|
|
|
# load graph data
|
|
question_limits_all = torch.stack(question_limits_all, 0) # [10, 100, 2]
|
|
|
|
question_graphs = pickle.load(
|
|
open(os.path.join(ques_adj_matrices_dir, f'{graph_idx}.pkl'), 'rb')
|
|
)
|
|
question_edge_indices_all = [] # [10, N] we do not repeat it 100 times here
|
|
question_edge_attributes_all = [] # [10, N] we do not repeat it 100 times here
|
|
|
|
for q_graph_round in question_graphs:
|
|
question_edge_index = []
|
|
question_edge_attribute = []
|
|
for edge_index, edge_attr in q_graph_round:
|
|
question_edge_index.append(edge_index)
|
|
edge_attr_one_hot = np.zeros((len(self.parse_vocab) + 1,), dtype=np.float32)
|
|
edge_attr_one_hot[self.parse_vocab.get(edge_attr, len(self.parse_vocab))] = 1.0
|
|
question_edge_attribute.append(edge_attr_one_hot)
|
|
question_edge_index = np.array(question_edge_index, dtype=np.float64)
|
|
question_edge_attribute = np.stack(question_edge_attribute, axis=0)
|
|
|
|
question_edge_indices_all.extend(
|
|
[torch.from_numpy(question_edge_index).t().long().contiguous() for _ in range(100)])
|
|
question_edge_attributes_all.extend(
|
|
[torch.from_numpy(question_edge_attribute).contiguous() for _ in range(100)])
|
|
|
|
_history_edge_incides_all = pickle.load(
|
|
open(os.path.join(hist_adj_matrices_dir, f'{graph_idx}.pkl'), 'rb')
|
|
)
|
|
history_edge_incides_all = []
|
|
for hist_edge_indices_rnd in _history_edge_incides_all:
|
|
history_edge_incides_all.extend(
|
|
[torch.tensor(hist_edge_indices_rnd).t().long().contiguous() for _ in range(100)]
|
|
)
|
|
|
|
item = {}
|
|
item['tokens'] = tokens_all
|
|
item['segments'] = segments_all
|
|
item['sep_indices'] = sep_indices_all
|
|
item['mask'] = mask_all
|
|
item['hist_len'] = hist_len_all
|
|
item['input_mask'] = input_mask_all
|
|
|
|
item['gt_option_inds'] = torch.LongTensor(gt_option_inds)
|
|
|
|
# return dense annotation data as well
|
|
if self.visdial_data_val_dense:
|
|
item['round_id'] = torch.LongTensor([self.visdial_data_val_dense[index]['round_id']])
|
|
item['gt_relevance'] = gt_relevance
|
|
|
|
item['question_limits'] = question_limits_all
|
|
|
|
item['question_edge_indices'] = question_edge_indices_all
|
|
item['question_edge_attributes'] = question_edge_attributes_all
|
|
|
|
item['history_edge_indices'] = history_edge_incides_all
|
|
item['history_sep_indices'] = history_sep_indices_all
|
|
|
|
# get image features
|
|
if not self.config['dataloader_text_only']:
|
|
features, num_boxes, boxes, _ , image_target, image_edge_indexes, image_edge_attributes = self._image_features_reader[img_id]
|
|
features, spatials, image_mask, image_target, image_label = encode_image_input(
|
|
features, num_boxes, boxes, image_target, max_regions=self._max_region_num, mask_prob=0)
|
|
else:
|
|
features = spatials = image_mask = image_target = image_label = torch.tensor([0])
|
|
|
|
elif self.split == 'test':
|
|
assert num_options == 100
|
|
cur_rnd_utterance = [self.tokenizer.convert_tokens_to_ids(dialog['caption'].split(' '))]
|
|
options_all = []
|
|
for rnd,utterance in enumerate(dialog['dialog']):
|
|
cur_rnd_utterance.append(self.tokenizer.convert_tokens_to_ids(cur_questions[utterance['question']].split(' ')))
|
|
if rnd != len(dialog['dialog'])-1:
|
|
cur_rnd_utterance.append(self.tokenizer.convert_tokens_to_ids(cur_answers[utterance['answer']].split(' ')))
|
|
for answer_option in dialog['dialog'][-1]['answer_options']:
|
|
cur_option = cur_rnd_utterance.copy()
|
|
cur_option.append(self.tokenizer.convert_tokens_to_ids(cur_answers[answer_option].split(' ')))
|
|
options_all.append(cur_option)
|
|
|
|
tokens_all = []
|
|
mask_all = []
|
|
segments_all = []
|
|
sep_indices_all = []
|
|
hist_len_all = []
|
|
|
|
for j, option in enumerate(options_all):
|
|
option, start_segment = self.pruneRounds(option, self.config['visdial_tot_rounds'])
|
|
tokens, segments, sep_indices, mask = encode_input(option, start_segment ,self.CLS,
|
|
self.SEP, self.MASK ,max_seq_len=MAX_SEQ_LEN, mask_prob=0)
|
|
|
|
tokens_all.append(tokens)
|
|
mask_all.append(mask)
|
|
segments_all.append(segments)
|
|
sep_indices_all.append(sep_indices)
|
|
hist_len_all.append(torch.LongTensor([len(option)-1]))
|
|
|
|
tokens_all = torch.cat(tokens_all,0)
|
|
mask_all = torch.cat(mask_all,0)
|
|
segments_all = torch.cat(segments_all, 0)
|
|
sep_indices_all = torch.cat(sep_indices_all, 0)
|
|
hist_len_all = torch.cat(hist_len_all,0)
|
|
hist_idx = [i*2 for i in range(len(dialog['dialog']))]
|
|
history_sep_indices_all = [sep_indices.squeeze(0)[hist_idx].contiguous() for _ in range(num_options)]
|
|
|
|
with open(os.path.join(ques_adj_matrices_dir, f'{graph_idx}.pkl'), 'rb') as f:
|
|
question_graphs = pickle.load(f)
|
|
q_graph_last = question_graphs[-1]
|
|
question_edge_index = []
|
|
question_edge_attribute = []
|
|
for edge_index, edge_attr in q_graph_last:
|
|
question_edge_index.append(edge_index)
|
|
edge_attr_one_hot = np.zeros((len(self.parse_vocab) + 1,), dtype=np.float32)
|
|
edge_attr_one_hot[self.parse_vocab.get(edge_attr, len(self.parse_vocab))] = 1.0
|
|
question_edge_attribute.append(edge_attr_one_hot)
|
|
question_edge_index = np.array(question_edge_index, dtype=np.float64)
|
|
question_edge_attribute = np.stack(question_edge_attribute, axis=0)
|
|
|
|
question_edge_indices_all = [torch.from_numpy(question_edge_index).t().long().contiguous() for _ in range(num_options)]
|
|
question_edge_attributes_all = [torch.from_numpy(question_edge_attribute).contiguous() for _ in range(num_options)]
|
|
|
|
with open(os.path.join(hist_adj_matrices_dir, f'{graph_idx}.pkl'), 'rb') as f:
|
|
_history_edge_incides_all = pickle.load(f)
|
|
_history_edge_incides_last = _history_edge_incides_all[-1]
|
|
history_edge_index_all = [torch.tensor(_history_edge_incides_last).t().long().contiguous() for _ in range(num_options)]
|
|
|
|
if self.config['stack_gr_data']:
|
|
question_edge_indices_all = torch.stack(question_edge_indices_all, dim=0)
|
|
question_edge_attributes_all = torch.stack(question_edge_attributes_all, dim=0)
|
|
history_edge_index_all = torch.stack(history_edge_index_all, dim=0)
|
|
history_sep_indices_all = torch.stack(history_sep_indices_all, dim=0)
|
|
len_question_gr = torch.tensor(question_edge_indices_all.size(-1)).unsqueeze(0).repeat(num_options, 1)
|
|
len_history_gr = torch.tensor(history_edge_index_all.size(-1)).repeat(num_options, 1)
|
|
len_history_sep = torch.tensor(history_sep_indices_all.size(-1)).repeat(num_options, 1)
|
|
|
|
item = {}
|
|
item['tokens'] = tokens_all.unsqueeze(0)
|
|
item['segments'] = segments_all.unsqueeze(0)
|
|
item['sep_indices'] = sep_indices_all.unsqueeze(0)
|
|
item['mask'] = mask_all.unsqueeze(0)
|
|
item['hist_len'] = hist_len_all.unsqueeze(0)
|
|
item['question_limits'] = question_limits_all
|
|
item['question_edge_indices'] = question_edge_indices_all
|
|
item['question_edge_attributes'] = question_edge_attributes_all
|
|
|
|
item['history_edge_indices'] = history_edge_index_all
|
|
item['history_sep_indices'] = history_sep_indices_all
|
|
|
|
if self.config['stack_gr_data']:
|
|
item['len_question_gr'] = len_question_gr
|
|
item['len_history_gr'] = len_history_gr
|
|
item['len_history_sep'] = len_history_sep
|
|
|
|
item['round_id'] = torch.LongTensor([dialog['round_id']])
|
|
|
|
# get image features
|
|
if not self.config['dataloader_text_only']:
|
|
features, num_boxes, boxes, _ , image_target, image_edge_indexes, image_edge_attributes = self._image_features_reader[img_id]
|
|
features, spatials, image_mask, image_target, image_label = encode_image_input(features, num_boxes, boxes, image_target, max_regions=self._max_region_num, mask_prob=0)
|
|
else:
|
|
features = spatials = image_mask = image_target = image_label = torch.tensor([0])
|
|
|
|
item['image_feat'] = features
|
|
item['image_loc'] = spatials
|
|
item['image_mask'] = image_mask
|
|
item['image_target'] = image_target
|
|
item['image_label'] = image_label
|
|
item['image_id'] = torch.LongTensor([img_id])
|
|
if self._split == 'train':
|
|
# cheap hack to account for the graph data for the postitive and negatice examples
|
|
item['image_edge_indices'] = [torch.from_numpy(image_edge_indexes).long(), torch.from_numpy(image_edge_indexes).long()]
|
|
item['image_edge_attributes'] = [torch.from_numpy(image_edge_attributes), torch.from_numpy(image_edge_attributes)]
|
|
elif self._split == 'val':
|
|
# cheap hack to account for the graph data for the postitive and negatice examples
|
|
item['image_edge_indices'] = [torch.from_numpy(image_edge_indexes).contiguous().long() for _ in range(1000)]
|
|
item['image_edge_attributes'] = [torch.from_numpy(image_edge_attributes).contiguous() for _ in range(1000)]
|
|
|
|
else:
|
|
# cheap hack to account for the graph data for the postitive and negatice examples
|
|
item['image_edge_indices'] = [torch.from_numpy(image_edge_indexes).contiguous().long() for _ in range(100)]
|
|
item['image_edge_attributes'] = [torch.from_numpy(image_edge_attributes).contiguous() for _ in range(100)]
|
|
|
|
if self.config['stack_gr_data']:
|
|
item['image_edge_indices'] = torch.stack(item['image_edge_indices'], dim=0)
|
|
item['image_edge_attributes'] = torch.stack(item['image_edge_attributes'], dim=0)
|
|
len_image_gr = torch.tensor(item['image_edge_indices'].size(-1)).unsqueeze(0).repeat(num_options)
|
|
item['len_image_gr'] = len_image_gr
|
|
|
|
return item
|