eye_movements_personality/featureExtraction/gaze_analysis.py

583 lines
24 KiB
Python
Raw Normal View History

2018-05-05 21:25:39 +02:00
#!/usr/bin/python
import numpy as np
import sys, os
from featureExtraction import event_detection as ed
import operator
from config import names as gs
class gazeAnalysis (object):
# dictionary for saccade-based n-grams:
# each character encodes one direction, capital characters stand for long saccades, the others for short ones
# short means the saccade amplitude is less than 2 fixation_radius_thresholds
# U
# O A
# N u B
# M n b C
# L l . r R
# K j f E
# J d F
# H G
# D
sacc_dictionary = ['A', 'B', 'C', 'R', 'E', 'F', 'G', 'D', 'H', 'J', 'K', 'L', 'M', 'N', 'O', 'U', 'u', 'b', 'r', 'f',
'd', 'j', 'l', 'n']
sacc_bins_two = [a+b for a in sacc_dictionary for b in sacc_dictionary]
sacc_bins_three = [a+b+c for a in sacc_dictionary for b in sacc_dictionary for c in sacc_dictionary]
sacc_bins_four = [a+b+c+d for a in sacc_dictionary for b in sacc_dictionary for c in sacc_dictionary for d in sacc_dictionary]
sacc_bins = [sacc_dictionary, sacc_bins_two, sacc_bins_three, sacc_bins_four]
# dictionary for saccade and fixation-based n-grams:
# S are saccades, long or short (i.e. longer or shorter than the fixation radius), and up/down/right/left
# e.g. S_lu is a long saccade up
# F are fixations, either long or short (i.e. longer or shorter than twice the minimum fixation duration)
# saccFix_dictionary = ['S_lu', 'S_ld', 'S_lr', 'S_ll', 'S_su', 'S_sd', 'S_sr', 'S_sl', 'F_l', 'F_s']
saccFix_dictionary = ['U', 'D', 'R', 'L', 'u', 'd', 'r', 'l', 'F', 'f']
saccFix_bins_two = [a+b for a in saccFix_dictionary for b in saccFix_dictionary]
saccFix_bins_three = [a+b+c for a in saccFix_dictionary for b in saccFix_dictionary for c in saccFix_dictionary]
saccFix_bins_four = [a+b+c+d for a in saccFix_dictionary for b in saccFix_dictionary for c in saccFix_dictionary for d in saccFix_dictionary]
saccFix_bins = [saccFix_dictionary, saccFix_bins_two, saccFix_bins_three, saccFix_bins_four]
def __init__(self, gaze, fixation_radius_threshold, fixation_duration_threshold, saccade_min_velocity,max_saccade_duration,
pupil_diameter=None, event_strings=None, ti=0, xi=1, yi=2):
assert gaze.size > 0
# save data in instance
self.gaze = gaze
self.diams = pupil_diameter
self.event_strings = event_strings
# save constants, indices and thresholds that will be used muttiple times
self.fixation_radius_threshold = fixation_radius_threshold
self.fixation_duration_threshold = fixation_duration_threshold
self.xi = xi
self.yi = yi
self.ti = ti
# detect errors, fixations, saccades and blinks
self.errors = self.detect_errors()
self.fixations, self.saccades, self.blinks, self.wordbook_string = \
ed.detect_all(self.gaze, self.errors, self.ti, self.xi, self.yi, pupil_diameter=pupil_diameter,
event_strings=event_strings, fixation_duration_threshold=fixation_duration_threshold,
fixation_radius_threshold=fixation_radius_threshold, saccade_min_velocity=saccade_min_velocity,
max_saccade_duration=max_saccade_duration)
def detect_errors(self, confidence_threshold=0.8, outlier_threshold=0.5):
"""
:param confidence_threshold: threshold below which all gaze data is deleted
:param outlier_threshold: threshold beyond which gaze must not be outside the calibration area (i.e. [0,1])
"""
errors = np.full((len(self.gaze)), False, dtype=bool)
# gaze is nan
errors[np.isnan(self.gaze[:, self.xi])] = True
errors[np.isnan(self.gaze[:, self.yi])] = True
# gaze outside a certain range
errors[self.gaze[:, self.xi] < -outlier_threshold] = True
errors[self.gaze[:, self.xi] > outlier_threshold + 1] = True
errors[self.gaze[:, self.yi] < -outlier_threshold] = True
errors[self.gaze[:, self.yi] > outlier_threshold + 1] = True
return errors
def get_window_features(self, sliding_window_size, sliding_window_step_size, start_index=-1, end_index=-1):
"""
computes features using a sliding window approach with the given sliding_window_size and sliding_window_step_size
"""
# if no start and end index are given, use all data
if start_index == -1 and end_index == -1:
start_index = 0
end_index = len(self.gaze[:, 0]) - 1
# compute start and end times of each resulting sliding window
window_times = self.get_sliding_windows(start_index, end_index, sliding_window_size, sliding_window_step_size)
#compute features for each of these windows:
window_feature_list = []
for [a,b,at,bt] in window_times:
overallstats = self.get_full_feature_vector(a, b)
window_feature_list.append(overallstats)
assert len(gs.full_label_list) == len(window_feature_list[0])
window_feature_list = np.array(window_feature_list)
window_times = np.array(window_times)
return window_feature_list, window_times
def get_full_feature_vector(self, start_index, end_index):
"""
assembles the full feature vector of its part:
features based on fixations/saccades/blinks, raw data, heatmaps, n-grams based on saccades and n-grams based on saccades and fixations
"""
# features based on events, i.e. fixations/saccades/blinks
features = self.get_event_features(start_index, end_index)
assert len(gs.event_feature_labels) == len(features)
# features based on raw data, like quartiles of gaze posiitons
raw_features = self.get_raw_features(start_index, end_index)
features.extend(raw_features)
assert len(gs.position_feature_labels) == len(raw_features)
# heatmap features
heatmap_features = self.get_heatmap_features(start_index, end_index)
features.extend(heatmap_features)
assert len(gs.heatmap_feature_labels) == len(heatmap_features)
# n-gram features based on saccades
sacc_wordbook_features = self.get_sacc_ngram_features(start_index, end_index)
features.extend(sacc_wordbook_features)
assert len(gs.get_wordbook_feature_labels('')) == len(sacc_wordbook_features)
# n-gram features based on saccades and fixations
saccFix_wordbook_features = self.get_saccFix_ngram_features(start_index, end_index)
features.extend(saccFix_wordbook_features)
assert len(gs.get_wordbook_feature_labels('')) == len(saccFix_wordbook_features)
return features
def get_event_features(self, start_index, end_index):
"""
computes features based on fixations, saccades and blinks within the selected gaze window
"""
event_features = []
# get non-errouneous samples between start_index and end_index:
x,y,d = self.get_x_y_d_part(start_index, end_index)
data = self.gaze[start_index:(end_index+1), :]
fixations, saccades, wordbook_string, blinks = self.get_FixSacWb_timed(start_index, end_index)
n, m = data.shape
timespan = (data[-1,self.ti] - data[0,self.ti])
num_fix =len(fixations)
num_sacc =len(saccades)
if timespan == 0:
fix_rate = 0
sacc_rate = 0
else:
fix_rate = num_fix / float(timespan)
sacc_rate = num_sacc / float(timespan)
event_features.append(fix_rate) # 0. rate of fixations
event_features.append(sacc_rate) # 1. rate of saccades
sacc_UR_L = wordbook_string.count('U') + wordbook_string.count('A') + wordbook_string.count('B') + wordbook_string.count('C')
sacc_BR_L = wordbook_string.count('R') + \
wordbook_string.count('E') + \
wordbook_string.count('F') + \
wordbook_string.count('G')
sacc_UL_L = wordbook_string.count('O') \
+ wordbook_string.count('N') \
+ wordbook_string.count('M') \
+ wordbook_string.count('L')
sacc_BL_L = wordbook_string.count('K') \
+ wordbook_string.count('J') \
+ wordbook_string.count('H') \
+ wordbook_string.count('D')
sacc_UR_S = wordbook_string.count('u') \
+ wordbook_string.count('b')
sacc_BR_S = wordbook_string.count('r') \
+ wordbook_string.count('f')
sacc_UL_S = wordbook_string.count('n') \
+ wordbook_string.count('l')
sacc_BL_S = wordbook_string.count('j') \
+ wordbook_string.count('d')
num_s_sacc = sacc_UR_S + sacc_BR_S + sacc_UL_S + sacc_BL_S
num_la_sacc = sacc_UR_L + sacc_BR_L + sacc_UL_L + sacc_BL_L
num_r_sacc = sacc_UR_S + sacc_BR_S + sacc_UR_L + sacc_BR_L
num_l_sacc = sacc_UL_S + sacc_BL_S + sacc_UL_L + sacc_BL_L
if timespan > 0:
event_features.append(num_s_sacc / float(timespan)) #2. rate of small saccades
event_features.append(num_la_sacc / float(timespan)) #3. rate of large saccades
event_features.append(num_r_sacc / float(timespan)) #4. rate of pos saccades
event_features.append(num_l_sacc / float(timespan)) #5. rate of neg saccades
else:
event_features.extend([0]*4)
if num_fix > 0:
event_features.append(num_sacc / float(num_fix)) # 6. ratio saccades / fixations
else:
event_features.append(0)
if num_sacc > 0:
event_features.append(num_s_sacc /float(num_sacc)) # 7. ratio small sacc
event_features.append(num_la_sacc / float(num_sacc)) # 8. ratio large sacc
event_features.append(num_r_sacc / float(num_sacc)) # 9. ratio pos sacc
event_features.append(num_l_sacc / float(num_sacc)) # 10. ratio neg sacc
else:
event_features.extend([0]*4)
sacc_array = np.array(saccades)
fix_array = np.array(fixations)
if sacc_array.size > 0:
# amplitude features
amplitudes = sacc_array[:, gs.sacc_amplitude_i]
event_features.append(np.mean(amplitudes)) # 11: mean sacc amplitude
event_features.append(np.var(amplitudes)) # 12: var sacc amplitude
event_features.append(amplitudes.min()) # 13 min sacc amplitude
event_features.append(amplitudes.max()) # 14: max sacc amplitude
# peak velocity features
velocities = sacc_array[:, gs.sacc_peak_vel_i]
event_features.append(np.mean(velocities)) # 15: mean peak velocity
event_features.append(np.var(velocities)) # 16: var peak velocity
event_features.append(velocities.min()) # 17: min peak velocity
event_features.append(velocities.max()) # 18: max peak velocity
if sacc_array[0, :].size == 13:
event_features.append(np.mean(sacc_array[:, gs.sacc_mean_diam_i])) # 19 mean mean diameter
event_features.append(np.var(sacc_array[:, gs.sacc_mean_diam_i])) # 20 var mean diameter
event_features.append(np.mean(sacc_array[:, gs.sacc_var_diam_i])) # 21 mean var diameter
event_features.append(np.var(sacc_array[:, gs.sacc_var_diam_i])) # 22 var var diameter
else:
event_features.extend([0]*4)
else:
event_features.extend([0]*12)
if fix_array.size > 0:
durations = np.array(fix_array[:, gs.fix_end_t_i]) - np.array(fix_array[:, gs.fix_start_t_i])
event_features.append(np.mean(durations)) # 23: mean fix duration
event_features.append(np.var(durations)) # 24: var fix duration
event_features.append(durations.min()) # 25: min fix duration
event_features.append(durations.max()) # 26: max fix duration
event_features.append(durations.sum()) # 27: dwelling time
event_features.append(np.mean(fix_array[:, gs.fix_mean_succ_angles])) # 28: mean mean subsequent angle
event_features.append(np.var(fix_array[:, gs.fix_mean_succ_angles])) # 28: var mean subsequent angle
event_features.append(np.mean(fix_array[:, gs.fix_var_succ_angles])) # 28: mean var subsequent angle
event_features.append(np.var(fix_array[:, gs.fix_var_succ_angles])) # 28: var var subsequent angle
lnnII = np.logical_not(np.isnan(fix_array[:, gs.fix_var_x_i]))
lnnIII = np.logical_not(np.isnan(fix_array[:, gs.fix_var_y_i]))
event_features.append(np.mean(fix_array[lnnII, gs.fix_var_x_i])) # mean var x
event_features.append(np.mean(fix_array[lnnIII, gs.fix_var_y_i])) # mean var y
event_features.append(np.var(fix_array[lnnII, gs.fix_var_x_i])) # 29: var var x
event_features.append(np.var(fix_array[lnnIII, gs.fix_var_y_i])) # 30: var var y
if fix_array[0, :].size == 12:
event_features.append(np.mean(fix_array[:, gs.fix_mean_diam_i])) # 31 mean mean diameter
event_features.append(np.var(fix_array[:, gs.fix_mean_diam_i])) # 32 var mean diameter
event_features.append(np.mean(fix_array[:, gs.fix_var_diam_i])) # 33 mean var diameter
event_features.append(np.var(fix_array[:, gs.fix_var_diam_i])) # 34 var var diameter
else:
event_features.extend([0]*4)
else:
event_features.extend([0]*17)
blink_array = np.array(blinks)
if blink_array.size > 0:
durations = np.array(blink_array[:, 1]) - np.array(blink_array[:, 0])
event_features.append(np.mean(durations)) #35
event_features.append(np.var(durations)) #36
event_features.append(durations.min()) #37
event_features.append(durations.max()) #38
event_features.append(np.true_divide(len(blink_array), timespan)) #39
else:
event_features.extend([0]*5)
return event_features
def get_x_y_d_part(self, start_index, end_index):
x = self.gaze[start_index:(end_index + 1), self.xi]
y = self.gaze[start_index:(end_index + 1), self.yi]
d = (self.diams[start_index:(end_index + 1), 1] + self.diams[start_index:(end_index + 1), 2]) / 2.0
err = self.errors[start_index:(end_index + 1)]
x = x[np.logical_not(err)]
y = y[np.logical_not(err)]
d = d[np.logical_not(err)]
return x,y,d
def get_raw_features(self, start_index, end_index):
"""
computes features based on raw gaze data, like percentiles of x coordinates
"""
raw_features = []
x,y,d = self.get_x_y_d_part(start_index, end_index)
for a in [x, y, d]:
raw_features.append(np.mean(a))
for a in [x, y, d]:
raw_features.append(np.amin(a))
for a in [x, y, d]:
raw_features.append(np.amax(a))
for a in [x, y, d]:
raw_features.append(np.amax(a) - np.amin(a))
for a in [x, y, d]:
raw_features.append(np.std(a))
for a in [x, y, d]:
raw_features.append(np.median(a))
for a in [x, y, d]:
raw_features.append(np.percentile(a, 25))
for a in [x, y, d]:
raw_features.append(np.percentile(a, 75))
for a in [x, y, d]:
raw_features.append(np.percentile(a, 75) - np.percentile(a, 25))
for a in [x, y, d]:
raw_features.append(np.mean(np.abs(a[1:] - a[:-1])))
for a in [x, y, d]:
raw_features.append(np.mean(a[1:] - a[:-1]))
dx = x[:-1] - x[1:]
dy = y[:-1] - y[1:]
succ_angles = np.arctan2(dy, dx)
raw_features.append(np.mean(succ_angles))# 28: mean subsequent angle
return raw_features
def get_heatmap_features(self, start_index, end_index):
"""
computes a heatmap over the raw gaze positions, in a 8x8 grid
"""
x,y,d = self.get_x_y_d_part(start_index, end_index)
xmin = np.percentile(x, 2.5)
xmax = np.percentile(x, 97.5)
ymin = np.percentile(y, 2.5)
ymax = np.percentile(y, 97.5)
heatmap, xedges, yedges = np.histogram2d(x, y, bins=(8, 8), range=[[xmin, xmax], [ymin, ymax]])
normalised_flat_heatmap = heatmap.flatten() / np.sum(heatmap)
return normalised_flat_heatmap
def get_sacc_ngram_features(self, start_index, end_index):
# find those saccades that either start or end within start_index and end_index, or start before start_index and end after end_index
mysacc = [sacc for sacc in self.saccades if (sacc[gs.sacc_start_index_i] > start_index and sacc[gs.sacc_start_index_i] < end_index)
or (sacc[gs.sacc_end_index_i] > start_index and sacc[gs.sacc_end_index_i] < end_index)
or (sacc[gs.sacc_start_index_i] < start_index and sacc[gs.sacc_end_index_i] > end_index)]
# create string representing all saccades in mysacc
mywbs = [self.wordbook_string[mysacc.index(sacc)] for sacc in mysacc]
# create all possible n-grams of a certain length
ngrams = []
ngrams.append(mywbs)
for n in xrange(2,5):
ngrams.append([reduce(operator.add, mywbs[i:i+n]) for i in range(len(mywbs) - n)])
# compute histograms of the actual n-grams occuring in the data
histograms=[]
for i in xrange(0,4):
histograms.append(dict((x, ngrams[i].count(x)) for x in self.sacc_bins[i]))
# compute features from each histogram and append them to one list
sacc_ngram_features = []
for h in histograms:
wb_feat = self.get_ngram_features(h)
sacc_ngram_features.extend(wb_feat)
return sacc_ngram_features
def get_saccFix_wb_string_saccades(self, sacc):
"""
returns a string for a single saccade that will be used for n-gram features based on saccades and fixations
"""
amplitude = sacc[gs.sacc_amplitude_i]
angle_rad = sacc[gs.sacc_angle_i]
angle_deg = np.true_divide(angle_rad * 180.0, np.pi)
# 0 degrees is pointing to the right
if angle_deg < 45:
wb_str = 'r'
elif angle_deg < 135:
wb_str = 'u'
elif angle_deg < 225:
wb_str = 'l'
elif angle_deg < 315:
wb_str = 'd'
else:
wb_str = 'r'
if amplitude >= 2 * self.fixation_radius_threshold: # less than 2 fixation_radius_thresholds
wb_str = wb_str.upper()
return wb_str
def get_saccFix_wb_string_fixations(self, fix):
"""
returns a string for a single fixation that will be used for n-gram features based on saccades and fixations
"""
if fix[gs.fix_end_t_i] - fix[gs.fix_start_t_i] < 2 * self.fixation_duration_threshold:
return 'f'
else:
return 'F'
def get_saccFix_ngram_features(self, start_index, end_index):
"""
computes n-gram features based on saccades and fixations
"""
# find all saccades and fixations between start_index and end_index,
# and create a string of their encodings
sacc_index = 0
fix_index = 0
wordbook_string = []
sacc_start_i = gs.sacc_start_index_i
sacc_end_i = gs.sacc_end_index_i
fix_start_i = gs.fix_start_index_i
fix_end_i = gs.fix_end_index_i
while (self.saccades[sacc_index][sacc_end_i] < start_index) and (sacc_index < len(self.saccades) - 1):
sacc_index += 1
while (self.fixations[fix_index][fix_end_i] < start_index) and (fix_index < len(self.fixations) - 1):
fix_index += 1
while sacc_index < len(self.saccades) and fix_index < len(self.fixations):
if (self.saccades[sacc_index][sacc_start_i] < end_index) and (self.fixations[fix_index][fix_start_i] < end_index):
if self.saccades[sacc_index][sacc_start_i] < self.fixations[fix_index][fix_start_i]:
wordbook_string.append(self.get_saccFix_wb_string_saccades(self.saccades[sacc_index]))
sacc_index += 1
else:
wordbook_string.append(self.get_saccFix_wb_string_fixations(self.fixations[fix_index]))
fix_index += 1
elif self.saccades[sacc_index][sacc_start_i] < end_index:
wordbook_string.append(self.get_saccFix_wb_string_saccades(self.saccades[sacc_index]))
sacc_index += 1
elif self.fixations[fix_index][fix_start_i] < end_index:
wordbook_string.append(self.get_saccFix_wb_string_fixations(self.fixations[fix_index]))
fix_index += 1
else:
sacc_index += 1
fix_index += 1
# compute all possible n-grams
ngrams = []
ngrams.append(wordbook_string)
for n in xrange(2,5):
ngrams.append([reduce(operator.add, wordbook_string[i:i+n]) for i in range(len(wordbook_string) - n)])
# compute histograms for n-grams
histograms=[]
for i in xrange(0,4):
histograms.append(dict((x, ngrams[i].count(x)) for x in self.saccFix_bins[i]))
# compute features from each histogram and append to one list
ngram_features = []
for h in histograms:
wb_feat = self.get_ngram_features(h)
ngram_features.extend(wb_feat)
return ngram_features
def get_FixSacWb_timed(self, start_index, end_index):
"""
returns list of fixations, saccades, blinks and the associated wordbook_string
for the time between start_index and end_index
"""
myfix = [fix for fix in self.fixations if (fix[gs. fix_start_index_i] > start_index
and fix[gs. fix_start_index_i] < end_index)
or (fix[gs.fix_end_index_i]>start_index and fix[gs.fix_end_index_i]<end_index)
or (fix[gs.fix_start_index_i]<start_index and fix[gs.fix_end_index_i]>end_index)]
mysacc = [sacc for sacc in self.saccades if (sacc[gs.sacc_start_index_i]>start_index and sacc[gs.sacc_start_index_i]<end_index)
or (sacc[gs.sacc_end_index_i]>start_index and sacc[gs.sacc_end_index_i]<end_index)
or (sacc[gs.sacc_start_index_i]<start_index and sacc[gs.sacc_end_index_i]>end_index)]
mywbs = [self.wordbook_string[self.saccades.index(sacc)] for sacc in mysacc]
blinks = [b for b in self.blinks if (b[gs.blink_start_index_i]>start_index and b[gs.blink_start_index_i]<end_index)
or (b[gs.blink_end_index_i]>start_index and b[gs.blink_end_index_i]<end_index)
or (b[gs.blink_start_index_i]<start_index and b[gs.blink_end_index_i]>end_index)]
return myfix, mysacc, mywbs, blinks
def get_sliding_windows(self, start_index, end_index, sliding_window_size, sliding_window_step_size):
"""
computes a list of time windows resulting from the sliding windows approach with the given sliding_window_size and sliding_window_step_size
"""
window_times = [] # consisting of lists [a,b,t_a,t_b] where a is start index, b ist end index
a = start_index
b = min(self.getEndWindow(a, sliding_window_size), end_index)
if self.check_sliding_window_conditions(a, b, end_index, sliding_window_size):
window_times.append([a, b, self.gaze[a, self.ti], self.gaze[b, self.ti]])
while b < end_index:
a = self.getStartWindow(a, sliding_window_step_size)
b = self.getEndWindow(a, sliding_window_size)
# check if some conditions are fulfilled and if so, add to the window list
if self.check_sliding_window_conditions(a, b, end_index, sliding_window_size):
window_times.append([a, b, self.gaze[a, self.ti], self.gaze[b, self.ti]])
return window_times
def check_sliding_window_conditions(self, a, b, end_index, sliding_window_size):
# discard too short or too long sliding windows
window_duration = self.gaze[b, self.ti] - self.gaze[a, self.ti]
min_duration = sliding_window_size - 0.1*sliding_window_size
max_duration = sliding_window_size + 0.1*sliding_window_size
if window_duration < min_duration or window_duration>max_duration:
return False
if b <= end_index:
errors_in_window = np.sum(self.errors[a:(b+1)]) / (b-a)
if errors_in_window < 0.5:
# discard window if no saccade or fixation was detected
fixations, saccades, wordbook_string, blinks = self.get_FixSacWb_timed(a,b)
if len(fixations) == 0 and len(saccades) == 0:
return False
xgaze = self.gaze[a:(b+1), self.xi][np.logical_not(self.errors[a:(b+1)])]
ygaze = self.gaze[a:(b+1), self.yi][np.logical_not(self.errors[a:(b+1)])]
# discard window if less than 5 samples
if len(xgaze) < 5:
return False
# exclude windows with more than 66% constant gaze
(xvals, xcounts) = np.unique(xgaze, return_counts=True)
(yvals, ycounts) = np.unique(ygaze, return_counts=True)
xcounts = xcounts / float(np.sum(xcounts))
ycounts = ycounts / float(np.sum(ycounts))
if xcounts.max() > 0.66 or ycounts.max() > 0.66:
return False
#accept every remaining window
return True
else:
# discard windows with more than 50% erroneous samples
return False
return False
def getStartWindow(self, old_start, sliding_window_step_size):
start = old_start
starttime = self.gaze[old_start, self.ti]
while starttime < self.gaze[old_start, self.ti] + sliding_window_step_size:
start += 1
if start >= len(self.gaze[:, self.xi])-1:
return len(self.gaze[:, self.xi])-1
starttime = self.gaze[start, self.ti]
return start
def getEndWindow(self, start, sliding_window_size):
end = start
while self.gaze[end, self.ti] < self.gaze[start, self.ti] + sliding_window_size:
end += 1
if end >= len(self.gaze[:, self.xi])-1:
return len(self.gaze[:, self.xi])-1
return end
def get_ngram_features(self, wb):
feat = []
feat.append(sum(x > 0 for x in wb.values())) # 1. size
feat.append(np.max(wb.values())) # 2. maximum
nonzeros = [i for i in wb.values() if i]
if len(nonzeros)<1:
feat.append(0)
else:
feat.append(min(nonzeros)) # 3. non-zero minimum
feat.append(np.argmax(wb.values())) # 2. arg max
if len(nonzeros)<1:
feat.append(0)
else:
feat.append(np.argmin(np.array(nonzeros))) # 3. arg min
feat.append(feat[1] - feat[2]) # 4. diff max - min
feat.append(np.mean(wb.values())) # 5. mean of all counts
feat.append(np.var(wb.values())) # 6. var of all counts
return feat