98 lines
3.3 KiB
Python
98 lines
3.3 KiB
Python
import numpy as np
|
|
|
|
# global parameters
|
|
n_participants = 42
|
|
n_traits = 7
|
|
max_n_feat = 207
|
|
max_n_iter = 100
|
|
all_window_sizes = [5, 15, 30, 45, 60, 75, 90, 105, 120, 135]
|
|
all_shop_window_sizes = [5, 15] # at least 3/4 of the people have a time window in these times
|
|
|
|
# cross validation paramters
|
|
n_inner_folds = 3
|
|
n_outer_folds = 5
|
|
|
|
# Random Forest Parameters
|
|
tree_max_features = 15
|
|
tree_max_depth = 5
|
|
n_estimators = 100
|
|
max_n_jobs = 5
|
|
|
|
# given a window size, determine step size correctly for even and odd numbers
|
|
def get_step_size(window_size):
|
|
step_size = window_size / 2.0
|
|
if step_size * 10 % 2 == 0:
|
|
step_size = int(step_size)
|
|
return step_size
|
|
|
|
# relative paths
|
|
data_folder = 'data'
|
|
info_folder = 'info'
|
|
feature_folder = 'features'
|
|
result_folder = 'results'
|
|
figure_folder = 'figures'
|
|
annotation_path = info_folder + '/annotation.csv'
|
|
binned_personality_file = info_folder + '/binned_personality.csv'
|
|
personality_sex_age_file = info_folder + '/personality_sex_age.csv'
|
|
|
|
# load the personality trait names from file and map them to abbreviations
|
|
traitlabels = np.loadtxt(binned_personality_file, delimiter=',', dtype=str)[0, 1:]
|
|
def get_abbr(s):
|
|
return ''.join(item[0] for item in s.split() if item[0].isupper())
|
|
medium_traitlabels = [get_abbr(s) if (" " in s) else s for s in traitlabels]
|
|
short_traitlabels = [''.join(item[0] for item in tl.split() if item[0].isupper()) for tl in traitlabels]
|
|
|
|
|
|
# dynamically create relative paths for result files to create
|
|
def get_result_folder(annotation_val):
|
|
return result_folder + '/A' + str(annotation_val)
|
|
|
|
def get_result_filename(annotation_val, trait, shuffle_labels, i, add_suffix=False):
|
|
filename = get_result_folder(annotation_val) + '/' + short_traitlabels[trait]
|
|
if shuffle_labels:
|
|
filename += '_rnd'
|
|
filename += '_' + str(i).zfill(3)
|
|
if add_suffix:
|
|
filename += '.npz'
|
|
return filename
|
|
|
|
def get_feature_folder(participant):
|
|
return feature_folder + '/Participant' + str(participant).zfill(2)
|
|
|
|
def get_merged_feature_files(window_size):
|
|
return feature_folder + '/merged_features_' + str(window_size) + '.csv', feature_folder + '/merged_traits_' + str(window_size) + '.csv', feature_folder + '/merged_ids_' + str(window_size) + '.csv'
|
|
|
|
def get_data_folder(participant):
|
|
return data_folder + '/Participant' + str(participant).zfill(2)
|
|
|
|
def get_window_times_file(participant, window_size):
|
|
return get_feature_folder(participant) + "/window_times_" + str(window_size) + '.npy'
|
|
|
|
def get_window_features_file(participant, window_size):
|
|
return get_feature_folder(participant) + "/window_features_" + str(window_size) + '.npy'
|
|
|
|
def get_overall_features_file(participant):
|
|
return get_feature_folder(participant) + "/overall_features.npy"
|
|
|
|
|
|
# parameters for fixation/saccade detection
|
|
fixation_radius_threshold = 0.025
|
|
fixation_duration_threshold = 0.1
|
|
saccade_min_velocity = 2
|
|
max_saccade_duration = 0.5
|
|
|
|
# annotation constants (as given as arguments to train_classifier, and as used for file names in result_folder)
|
|
annotation_all = 0
|
|
annotation_ways = 1
|
|
annotation_shop = 2
|
|
annotation_values = [annotation_all, annotation_ways, annotation_shop]
|
|
|
|
# annotations used in merged_ids_* files in the feature_folder
|
|
# column 1
|
|
time_window_annotation_wayI = 1
|
|
time_window_annotation_shop = 2
|
|
time_window_annotation_wayII = 3
|
|
# column 2
|
|
time_window_annotation_halfI = 1
|
|
time_window_annotation_halfII = 2
|