gazesim/code/recording_experiment.py
2016-03-09 19:52:35 +01:00

196 lines
No EOL
7.3 KiB
Python

from __future__ import division
import numpy as np
from numpy import linalg as LA
from minimize import findInitialW, _q, g, minimizeEnergy
from time import time
from geom import getSphericalCoords, getAngularDiff
from recording.tracker import Marker
# from visual import vector as v # for vector operations
from vector import Vector as v
DATA_DIR = './recording/data/'
# DATA_DIR = '.\\recording\\data\\'
EYE_CAMERA_IMAGE_WIDTH = 640
EYE_CAMERA_IMAGE_HEIGHT = 360
curr_calibration_experiment = '006'
curr_test_experiment = '010'
# markers in order of being targeted:
experiments = {'005': [130, 608, 456, 399, 659, 301, 351, 707, 18],
'006': [130, 608, 456, 399, 659, 301, 351, 707, 18],
'007': [449, 914, 735, 842, 347, 660, 392, 782],
'010': [449, 914, 554, 243, 347, 173, 664, 399]}
def denormalize(p):
# return p * np.array([EYE_CAMERA_IMAGE_WIDTH, EYE_CAMERA_IMAGE_HEIGHT])
return p * np.array([EYE_CAMERA_IMAGE_WIDTH, EYE_CAMERA_IMAGE_HEIGHT]) - \
(np.array([EYE_CAMERA_IMAGE_WIDTH, EYE_CAMERA_IMAGE_HEIGHT]) / 2)
def main():
single_point = False
__p, _t = [], []
p, t = [], []
# Fetching marker position wrt camera t from calibration data
marker_data = np.load(DATA_DIR + 'frames_%s.npy' % curr_calibration_experiment)
# marker_data includes data on tracked markers per frame
# it's a list with as many entries as the number of video frames, each entry
# has a list of tracked markers, each marker item has marker id, marker corners, Rvec, Tvec
# TODO (remember the unit)
# Fetching pupil positions p from calibration data
pupil_data = np.load(DATA_DIR + 'pp_%s.npy' % curr_calibration_experiment)
# pupil_data is a list of tracked pupil positions, each entry has 3 elements
# array: frame range (start, end)
# array: mean pupil position
# list: all pupil positions in the range
# TODO (also remember to denormalize)
for i, pos in enumerate(pupil_data):
corresponding_marker_id = experiments[curr_calibration_experiment][i]
# print corresponding_marker_id
start, end = pos[0]
if len(pos[2]) == end-start+1: # all samples for this points are reliable
# add all corresponding pupil-3d points as mappings
# print start, end, len(pos[2])
for i, _p in enumerate(pos[2]):
frame_number = start + i
if frame_number >= len(marker_data): continue # TODO: investigate
for marker in marker_data[frame_number]:
if marker[0][0] == corresponding_marker_id:
if single_point:
__p.append(denormalize(_p))
_t.append(Marker.fromList(marker).getCenter())
else:
p.append(denormalize(_p))
t.append(Marker.fromList(marker).getCenter())
if single_point and len(__p):
p.append(sum(__p)/len(__p))
t.append(sum(_t)/len(_t))
__p, _t = [], []
else: # if pos[2] is nonempty consider the mean
if len(pos[2]): # TODO: here we can still map the corresponding pupil points to their detected marker given
# we have the frame correspondence (investigate)
# map pos[1] to corresponding markers
for frame_number in xrange(start, end+1):
if frame_number >= len(marker_data): continue # TODO: investigate
for marker in marker_data[frame_number]:
if marker[0][0] == corresponding_marker_id:
if single_point:
__p.append(denormalize(pos[1]))
_t.append(Marker.fromList(marker).getCenter())
else:
p.append(denormalize(pos[1]))
t.append(Marker.fromList(marker).getCenter())
if single_point and len(__p):
p.append(sum(__p)/len(__p))
t.append(sum(_t)/len(_t))
__p, _t = [], []
else:
pass
# No mapping here
print len(p), len(t)
# print p[0], t[0]
# we have to denormalize pupil points and correlated the two data streams (frame correspondence)
print 'Successfully loaded calibration data...'
# return
print 'Performing minimization...'
## Finding the optimal transformation matrix by minimizing the nonlinear energy
# w0 is the initial w by solving the leastsq with e=(0,0,0)
# w is by solving the leastsq again optimizing for both e and w
start = time()
w, e, w0 = minimizeEnergy(p, t)
minimizationTime = time() - start
print 'minimization time:', minimizationTime
p, t = [], []
marker_data = np.load(DATA_DIR + 'frames_%s.npy' % curr_test_experiment)
pupil_data = np.load(DATA_DIR + 'pp_%s.npy' % curr_test_experiment)
print len(pupil_data), len(experiments[curr_test_experiment])
for i, pos in enumerate(pupil_data):
corresponding_marker_id = experiments[curr_test_experiment][i]
# print corresponding_marker_id
start, end = pos[0]
if len(pos[2]) == end-start+1: # all samples for this points are reliable
# add all corresponding pupil-3d points as mappings
# print start, end, len(pos[2])
for i, _p in enumerate(pos[2]):
frame_number = start + i
if frame_number >= len(marker_data): continue # TODO: investigate
for marker in marker_data[frame_number]:
if marker[0][0] == corresponding_marker_id:
if single_point:
__p.append(denormalize(_p))
_t.append(Marker.fromList(marker).getCenter())
else:
p.append(denormalize(_p))
t.append(Marker.fromList(marker).getCenter())
if single_point and len(__p):
p.append(sum(__p)/len(__p))
t.append(sum(_t)/len(_t))
__p, _t = [], []
else: # if pos[2] is nonempty consider the mean
if len(pos[2]): # TODO: here we can still map the corresponding pupil points to their detected marker given
# we have the frame correspondence (investigate)
# map pos[1] to corresponding markers
for frame_number in xrange(start, end+1):
if frame_number >= len(marker_data): continue # TODO: investigate
for marker in marker_data[frame_number]:
if marker[0][0] == corresponding_marker_id:
if single_point:
__p.append(denormalize(pos[1]))
_t.append(Marker.fromList(marker).getCenter())
else:
p.append(denormalize(pos[1]))
t.append(Marker.fromList(marker).getCenter())
if single_point and len(__p):
p.append(sum(__p)/len(__p))
t.append(sum(_t)/len(_t))
__p, _t = [], []
else:
pass
print 'Successfully loaded test data...'
# closest point distance to scene camera
cDist = min(v(pt).mag for pt in t)
# farthest point distance to scene camera
fDist = max(v(pt).mag for pt in t)
# average point distance to scene camera
avgDist = sum(v(pt).mag for pt in t)/len(t)
qi = map(_q, p) # computing feature vectors from raw pupil coordinates in 2D
# computing unit gaze vectors corresponding to pupil positions
# here we use the computed mapping matrix w
gis = map(lambda q: g(q, w), qi)
gis0 = map(lambda q: g(q, w0), qi)
# now we can compare unit gaze vectors with their corresponding gaze rays t
# normalizing gaze rays first
t = np.array(map(lambda vec: v(vec).norm(), t))
# TODO: compare spherical coordinates instead
AE = list(np.degrees(np.arctan((v(p[0]).cross(p[1])/(v(p[0]).dot(p[1]))).mag)) for p in zip(gis, t))
N = len(t)
AAE = sum(AE)/N
VAR = sum((ae - AAE)**2 for ae in AE)/N
print 'AAE:', AAE, '\nVariance:', VAR, 'STD:', np.sqrt(VAR), '\nMin:', min(AE), 'Max:', max(AE), '(N=' + str(N) + ')'
print 'Target Distances: m=%s M=%s Avg=%s' % (cDist, fDist, avgDist)
AE0 = list(np.degrees(np.arctan((v(p[0]).cross(p[1])/(v(p[0]).dot(p[1]))).mag)) for p in zip(gis0, t))
AAE0 = sum(AE0)/N
print 'AAE (only optimizing W for e=(0,0,0)):', AAE0
if __name__ == '__main__':
main()