gazesim/code/short_sim.py
2016-03-09 19:52:35 +01:00

358 lines
13 KiB
Python

from __future__ import division
import visual as vs
import wx
import numpy as np
import pylab as plt
import math
from random import random as rnd
from util import *
from geom import *
from pupil.calibrate import get_map_from_cloud
mp = None # mapping obtained from training set
display_width = 800
display_height = 600
panel_width = 224
win = vs.window(width=display_width + panel_width, height=display_height, title='Gaze Simulation')
scene = vs.display(window=win, width=display_width, height=display_height)
################################################################################
## World Axes
drawAxes(None, vs.color.white, 13, (0, 0, 0))
################################################################################
################################################################################
## Eye Representation
eye_camera_pos = (-15, 20, 0)
scene_camera_pos = (0, 20, 0)
# This is gonna be the offset distance between the two spheres which are modelling an eye
eye_ball_offset = 4
eye_outer_pos = vs.vector((-15, 20, 15))
##_diff = vs.vector(scene_camera_pos) - eye_outer_pos
##eye_outer_pos = eye_outer_pos + _diff
##eye_camera_pos = vs.vector(eye_camera_pos) + _diff
##eye_camera_pos = (eye_camera_pos.x, eye_camera_pos.y, eye_camera_pos.z)
eye_outer_radius = 5.5
eye_outer = vs.sphere(pos=eye_outer_pos,
radius=eye_outer_radius,
color=vs.color.red)
# This direction should always be towards the target 3D point
# this is just the default value
pupil_direction = vs.vector(1, 0, 0)
pupil_position = None # computed whenever target is changed
pupil_positions = [] # 3D positions of the pupil to be projected onto the eye camera
eye_inner_radius = 3
eye_inner_pos = eye_outer_pos + pupil_direction * eye_ball_offset
eye_inner = vs.sphere(pos=eye_inner_pos,
radius = eye_inner_radius,
color=vs.color.white)
target_position = vs.vector(0, 0, 0)
def get_target_dir():
'''
Returns the direction of target from the eye
'''
return (target_position - eye_outer_pos).norm()
def adjust_eye():
'''
Adjusts eye in a way that it gazes at the target
'''
global pupil_direction, pupil_position
pupil_direction = get_target_dir()
eye_inner.pos = eye_outer_pos + pupil_direction * eye_ball_offset
pupil_position = eye_inner.pos + pupil_direction * eye_inner_radius
adjust_eye()
def drawPupilPoint():
vs.points(pos=[pupil_position], size=10, color=vs.color.blue)
################################################################################
################################################################################
## 3D Points for Training and Test
num_training = 25
num_test = 25
min_xyz = -25, -5, -110
max_xyz = 45, 65, -30
training_points = generatePoints(num_training, min_xyz, max_xyz, True, False)
test_points = generatePoints(num_test, min_xyz, max_xyz, False, True)
def drawTrainingPoints():
vs.points(pos=training_points, size=10, color=vs.color.yellow)
def drawTestPoints():
vs.points(pos=test_points, size=10, color=vs.color.blue)
drawTrainingPoints()
# drawTestPoints()
################################################################################
################################################################################
## Camera Object
class Camera(PinholeCamera):
default_radius = 2.0
def drawCameraFrame(self): # create frame and draw its contents
c = vs.vector(self.t)
self.center = vs.sphere(pos=c,
radius=Camera.default_radius,
color=vs.color.green)
self.dir = vs.arrow(pos=c,
axis=vs.vector(self.direction) * self.f,
shaftwidth=1.0)
self.img_plane = vs.box(pos=c + self.dir.axis,
length=self.image_width,
width=0.5,
height=self.image_width,
color=vs.color.white,
opacity=0.5)
def updateShape(self):
c = vs.vector(self.t)
# Update camera center
self.center.pos = c
# Update the arrow
self.dir.pos = c
self.dir.axis = vs.vector(self.direction) * self.f
# Update image plane
self.img_plane.pos = c + self.dir.axis
self.img_plane.length = self.image_width
self.img_plane.height = self.image_width
# Eye Camera
eye_camera = Camera(label='Eye Camera', f = 5)
eye_camera.setR((0, 0, 0))
eye_camera.setT(v(eye_camera_pos))# + v(30, 0, 0))
# eye_camera.setDir((0, 0, 1))
eye_camera.drawCameraFrame()
# Scene Camera
scene_camera = Camera(label='Scene Camera', f = 25, fov=math.pi/3)
scene_camera.setT(v(scene_camera_pos) + v(10, 5, -5))
scene_camera.setR((0, np.pi, 0))
# scene_camera.setDir((0, 0, -1))
scene_camera.drawCameraFrame()
# Cast rays from scene camera towards training points
for point in training_points:
diff = vs.vector(point) - vs.vector(scene_camera.t)
drawLine(None, vs.vector(scene_camera.t), diff.mag, diff.norm())
################################################################################
## Widgets
pan = win.panel # addr of wx window object
pan.SetSize((display_width + panel_width, display_height))
pan_minx = display_width + 7
wx.StaticText(pan, pos=(pan_minx, 7),
label = "Select an item..." )
def hReset(evt):
pass
c = 0
def gazeAtNextPoint(evt):
global c, target_position, pupil_positions
drawTrainingPoints()
if c >= num_training:
print 'Processed all training points...'
return
print 'Shifted gaze to point %d = %s...' % (c, training_points[c])
vs.points(pos=[training_points[c]], size=10, color=vs.color.red)
target_position = vs.vector(training_points[c])
c+=1
adjust_eye()
# drawPupilPoint()
pupil_positions.append(pupil_position)
def computeMap(evt):
global mp, c, pupil_positions
# Processing Projections
targets = map(lambda p:vs.vector(p), training_points)
targets = map(lambda p: scene_camera.project((p.x, p.y, p.z, 1)), targets)
targets = map(lambda p: (-p[0], p[1]), targets) # x values are in a different CS, hence there are inverted
# TODO: instead of inverting which only holds for this specific setting, rotate using scene_camera.R
pupil_locations = map(lambda p: eye_camera.project((p.x, p.y, p.z, 1)), pupil_positions)
# eye_camera is using the same world CS, so no reversing is required
# filtering out points outside of the image plane
old = len(targets)
invalid = []
for i in xrange(len(targets)):
p = targets[i]
if abs(p[0])>scene_camera.image_width/2. or abs(p[1])>scene_camera.image_width/2.:
invalid.append(i)
for i in invalid[::-1]:
targets = targets[:i] + targets[i+1:]
pupil_locations = pupil_locations[:i] + pupil_locations[i+1:]
print 'Removed %s invalid target points...' % (old-len(targets))
# Displaying target point projections
base = scene_camera.center.pos + scene_camera.dir.axis
pts = map(lambda p: np.array((p[0], p[1], 0)), targets)
vs.points(pos=map(lambda p:p+np.array([base.x, base.y, base.z]), pts), size=7, color=vs.color.red)
print 'Eye Camera Image Width:', eye_camera.image_width
# Displaying pupil point projections
base = eye_camera.center.pos + eye_camera.dir.axis
# drawLine(None, eye_camera.t, eye_camera.f * 3, eye_camera.direction, vs.color.yellow)
pts = map(lambda p: np.array((p[0], p[1], 0)), pupil_locations)
vs.points(pos=map(lambda p:p+np.array([base.x, base.y, base.z]), pts), size=3, color=vs.color.red)
# normalizing points
print 'Normalizing points...'
targets = scene_camera.getNormalizedPts(targets)
pupil_locations = eye_camera.getNormalizedPts(pupil_locations)
# computing polynomial map
print 'Computing polynomial map...'
mp = get_map_from_cloud(np.array([(pupil_locations[i][0], pupil_locations[i][1],
targets[i][0], targets[i][1]) for i in xrange(len(targets))]))
# from sklearn.neighbors import KNeighborsRegressor as knn
# ngh = knn(n_neighbors = 1)
# ngh.fit(pupil_locations, targets)
# mp = ngh.predict
print 'Successfully computed map...'
# Converting these to numpy arrays to support nice operands
targets = np.array(targets)
pupil_locations = np.array(pupil_locations)
print 'Scene Camera Image Width:', scene_camera.image_width
plt.subplot(211)
plt.title('Target Points')
plt.plot(targets[:, 0], targets[:, 1], 'ro')
plt.axis([0, 1, 0, 1])
plt.xlabel('X')
plt.ylabel('Y')
labels = ['p{0}'.format(i) for i in xrange(len(targets))]
for label, x, y in zip(labels, targets[:, 0], targets[:, 1]):
plt.annotate(
label,
xy = (x, y), xytext = (-13, 13),
textcoords = 'offset points', ha = 'right', va = 'top',
bbox = dict(boxstyle = 'round,pad=0.25', fc = 'yellow', alpha = 0.25),
arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'))
plt.subplot(212)
plt.title('Pupil Points')
plt.plot(pupil_locations[:, 0], pupil_locations[:, 1], 'bo')
plt.axis([0, 1, 0, 1])
plt.xlabel('X')
plt.ylabel('Y')
labels = ['p{0}'.format(i) for i in xrange(len(pupil_locations))]
for label, x, y in zip(labels, pupil_locations[:, 0], pupil_locations[:, 1]):
plt.annotate(
label,
xy = (x, y), xytext = (-13, 13),
textcoords = 'offset points', ha = 'right', va = 'top',
bbox = dict(boxstyle = 'round,pad=0.25', fc = 'yellow', alpha = 0.25),
arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'))
c=0
pupil_positions = []
plt.show()
def showTestPts(evt):
global c, target_position, pupil_positions
drawTestPoints()
if c >= num_test:
print 'Processed all test points...'
return
vs.points(pos=[test_points[c]], size=10, color=vs.color.red)
print 'Shifted gaze to point %d = %s...' % (c, test_points[c])
target_position = vs.vector(test_points[c])
adjust_eye()
pupil_positions.append(pupil_position)
c+=1
def projectAndMap(evt):
# Processing Projections
targets = map(lambda p:vs.vector(p), test_points)
targets = map(lambda p: scene_camera.project((p.x, p.y, p.z, 1)), targets)
targets = map(lambda p: (-p[0], p[1]), targets) # due to orientation of SC
pupil_locations = map(lambda p: eye_camera.project((p.x, p.y, p.z, 1)), pupil_positions)
# filtering out points outside of the image plane
old = len(targets)
invalid = []
for i in xrange(len(targets)):
p = targets[i]
if abs(p[0])>scene_camera.image_width/2. or abs(p[1])>scene_camera.image_width/2.:
invalid.append(i)
for i in invalid[::-1]:
targets = targets[:i] + targets[i+1:]
pupil_locations = pupil_locations[:i] + pupil_locations[i+1:]
print 'Removed %s invalid target points...' % (old-len(targets))
# normalizing points
print 'Normalizing points...'
targets = np.array(scene_camera.getNormalizedPts(targets))
pupil_locations = np.array(eye_camera.getNormalizedPts(pupil_locations))
# Compute mapped points
print pupil_locations
print 'Computing %s mapped points...' % len(pupil_locations)
mapped_targets = np.array(map(mp, np.array(pupil_locations)))
print 'Computed %s mapped points...' % len(mapped_targets)
print mapped_targets
C = scene_camera.center.pos
# ssd = sum((vs.vector(mapped_targets[i]) - vs.vector(targets[i])).mag**2 for i in xrange(len(mapped_targets)))
# Computing Angular Error (Sum of Angular Differences)
# denormalize points and add camera plane's z to each
base = scene_camera.center.pos + scene_camera.dir.axis
targets = scene_camera.getDenormalizedPts(targets)
targets = np.array(map(lambda p: np.concatenate((p + np.array([base.x, base.y]), np.array([base.z])), axis=0), targets))
mapped_targets = scene_camera.getDenormalizedPts(mapped_targets)
mapped_targets = np.array(map(lambda p: np.concatenate((p + np.array([base.x, base.y]), np.array([base.z])), axis=0), mapped_targets))
AE = list(getAngularDiff(vs.vector(targets[i]), vs.vector(mapped_targets[i]), C) for i in xrange(len(mapped_targets)))
N = len(mapped_targets)
AAE = sum(AE)/N
VAR = sum((ae - AAE)**2 for ae in AE)/N
print 'AAE = %s, Variance = %s, STD = %s' % (AAE, VAR, np.sqrt(VAR))
vs.points(pos=mapped_targets, size=2, color=vs.color.yellow)
plt.subplot(111)
plt.plot(targets[:, 0], targets[:, 1], 'bo', label='Projections')
plt.plot(mapped_targets[:, 0], mapped_targets[:, 1], 'ro', label='Mapped Estimations')
for _mp, tp in zip(mapped_targets, targets):
coords = zip(*(_mp, tp))
plt.plot(coords[0], coords[1], 'k-')
plt.legend()
plt.show()
y = 25
Button('Reset', pan_minx, y, hReset, (panel_width - 28, 40), pan)
y += 40 + 7
Button('Gaze at Next Point', pan_minx, y, gazeAtNextPoint, (panel_width - 28, 40), pan)
y += 40 + 7
Button('Compute Map', pan_minx, y, computeMap, (panel_width - 28, 40), pan)
y += 40 + 7
Button('Generate Test Points', pan_minx, y, showTestPts, (panel_width - 28, 40), pan)
y += 40 + 7
Button('Project, Map, Plot!', pan_minx, y, projectAndMap, (panel_width - 28, 40), pan)
################################################################################