Add NLP task models
This commit is contained in:
parent
d8beb17dfb
commit
69f6de0ace
46 changed files with 4976 additions and 0 deletions
|
@ -0,0 +1 @@
|
|||
from .main import *
|
86
joint_paraphrase_model/libs/paraphrase_generation/main.py
Normal file
86
joint_paraphrase_model/libs/paraphrase_generation/main.py
Normal file
|
@ -0,0 +1,86 @@
|
|||
import json
|
||||
import math
|
||||
import os
|
||||
|
||||
import random
|
||||
import time
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.ticker as ticker
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
|
||||
|
||||
class EncoderRNN(nn.Module):
|
||||
def __init__(self, input_size, hidden_size, embeddings):
|
||||
super(EncoderRNN, self).__init__()
|
||||
self.hidden_size = hidden_size
|
||||
|
||||
self.embedding = nn.Embedding.from_pretrained(embeddings)
|
||||
self.gru = nn.GRU(input_size, hidden_size)
|
||||
|
||||
def forward(self, input, hidden):
|
||||
embedded = self.embedding(input).view(1, 1, -1)
|
||||
output = embedded
|
||||
output, hidden = self.gru(output, hidden)
|
||||
return output, hidden
|
||||
|
||||
def initHidden(self):
|
||||
return torch.zeros(1, 1, self.hidden_size)
|
||||
|
||||
class AttnDecoderRNN(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
input_size,
|
||||
hidden_size,
|
||||
output_size,
|
||||
embeddings,
|
||||
dropout_p,
|
||||
max_length,
|
||||
):
|
||||
super(AttnDecoderRNN, self).__init__()
|
||||
self.input_size = input_size
|
||||
self.hidden_size = hidden_size
|
||||
self.output_size = output_size
|
||||
self.dropout_p = dropout_p
|
||||
self.max_length = max_length
|
||||
|
||||
self.embedding = nn.Embedding.from_pretrained(embeddings) #for paragen
|
||||
#self.embedding = nn.Embedding(len(embeddings), 300) #for NMT with tamil, trying wiht senitment too
|
||||
self.attn = nn.Linear(self.input_size + self.hidden_size, self.max_length)
|
||||
self.attn_combine = nn.Linear(
|
||||
self.input_size + self.hidden_size, self.hidden_size
|
||||
)
|
||||
self.dropout = nn.Dropout(self.dropout_p)
|
||||
self.gru = nn.GRU(self.hidden_size, self.hidden_size)
|
||||
self.out = nn.Linear(self.hidden_size, self.output_size)
|
||||
|
||||
def forward(self, input, hidden, encoder_outputs, fixations):
|
||||
embedded = self.embedding(input).view(1, 1, -1)
|
||||
embedded = self.dropout(embedded)
|
||||
|
||||
attn_weights = F.softmax(
|
||||
self.attn(torch.cat((embedded[0], hidden[0]), 1)), dim=1
|
||||
)
|
||||
|
||||
attn_weights = attn_weights * torch.nn.ConstantPad1d((0, attn_weights.shape[-1] - fixations.shape[-2]), 0)(fixations.squeeze().unsqueeze(0))
|
||||
|
||||
# attn_weights = torch.softmax(attn_weights * torch.nn.ConstantPad1d((0, attn_weights.shape[-1] - fixations.shape[-2]), 0)(fixations.squeeze().unsqueeze(0)), dim=1)
|
||||
|
||||
attn_applied = torch.bmm(
|
||||
attn_weights.unsqueeze(0), encoder_outputs.unsqueeze(0)
|
||||
)
|
||||
|
||||
output = torch.cat((embedded[0], attn_applied[0]), 1)
|
||||
output = self.attn_combine(output).unsqueeze(0)
|
||||
|
||||
output = F.relu(output)
|
||||
output, hidden = self.gru(output, hidden)
|
||||
|
||||
# output = F.log_softmax(self.out(output[0]), dim=1)
|
||||
output = self.out(output[0])
|
||||
# output = F.log_softmax(output, dim=1)
|
||||
return output, hidden, attn_weights
|
Loading…
Add table
Add a link
Reference in a new issue