mtomnet/tbd/models/common_mind.py

157 lines
6 KiB
Python
Raw Permalink Normal View History

2025-01-10 15:39:20 +01:00
import torch
import torch.nn as nn
import torchvision.models as models
from .base import CNN, MindNetLSTM
from memory_efficient_attention_pytorch import Attention
class CommonMindToMnet(nn.Module):
"""
img: bs, 3, 128, 128
pose: bs, 26, 3
gaze: bs, 2 NOTE: only tracker has gaze
bbox: bs, 4
"""
def __init__(self, hidden_dim, device, resnet=False, dropout=0.1, aggr='sum', mods=['rgb_1', 'rgb_3', 'pose', 'gaze', 'bbox']):
super(CommonMindToMnet, self).__init__()
self.aggr = aggr
self.mods = mods
# ---- 3rd POV Images, object and bbox ----#
if resnet:
resnet = models.resnet34(weights="IMAGENET1K_V1")
self.cnn = nn.Sequential(
*(list(resnet.children())[:-1])
)
#for param in self.cnn.parameters():
# param.requires_grad = False
self.rgb_ff = nn.Linear(512, hidden_dim)
else:
self.cnn = CNN(hidden_dim)
self.rgb_ff = nn.Linear(hidden_dim, hidden_dim)
self.bbox_ff = nn.Linear(4, hidden_dim)
# ---- Others ----#
self.act = nn.GELU()
self.dropout = nn.Dropout(dropout)
self.device = device
# ---- Mind nets ----#
self.mind_net_1 = MindNetLSTM(hidden_dim, dropout, mods=mods)
self.mind_net_2 = MindNetLSTM(hidden_dim, dropout, mods=[m for m in mods if m != 'gaze'])
if aggr != 'no_tom': self.cm_proj = nn.Linear(hidden_dim*2, hidden_dim)
self.ln_1 = nn.LayerNorm(hidden_dim)
self.ln_2 = nn.LayerNorm(hidden_dim)
if aggr == 'attn':
self.attn_left = Attention(
dim = hidden_dim,
dim_head = hidden_dim // 4,
heads = 4,
memory_efficient = True,
q_bucket_size = hidden_dim,
k_bucket_size = hidden_dim)
self.attn_right = Attention(
dim = hidden_dim,
dim_head = hidden_dim // 4,
heads = 4,
memory_efficient = True,
q_bucket_size = hidden_dim,
k_bucket_size = hidden_dim)
self.m1 = nn.Linear(hidden_dim, 4)
self.m2 = nn.Linear(hidden_dim, 4)
self.m12 = nn.Linear(hidden_dim, 4)
self.m21 = nn.Linear(hidden_dim, 4)
self.mc = nn.Linear(hidden_dim, 4)
def forward(self, img_3rd_pov, img_tracker, img_battery, pose1, pose2, bbox, tracker_id, gaze):
batch_size, sequence_len, channels, height, width = img_3rd_pov.shape
if 'bbox' in self.mods:
bbox_feat = self.dropout(self.act(self.bbox_ff(bbox)))
else:
bbox_feat = None
if 'rgb_3' in self.mods:
rgb_feat = []
for i in range(sequence_len):
images_i = img_3rd_pov[:,i]
img_i_feat = self.cnn(images_i)
img_i_feat = img_i_feat.view(batch_size, -1)
rgb_feat.append(img_i_feat)
rgb_feat = torch.stack(rgb_feat, 1)
rgb_feat_3rd_pov = self.dropout(self.act(self.rgb_ff(rgb_feat)))
else:
rgb_feat_3rd_pov = None
if tracker_id == 'skele1':
out_1, cell_1, feats_1 = self.mind_net_1(rgb_feat_3rd_pov, bbox_feat, img_tracker, pose1, gaze)
out_2, cell_2, feats_2 = self.mind_net_2(rgb_feat_3rd_pov, bbox_feat, img_battery, pose2, gaze=None)
else:
out_1, cell_1, feats_1 = self.mind_net_1(rgb_feat_3rd_pov, bbox_feat, img_tracker, pose2, gaze)
out_2, cell_2, feats_2 = self.mind_net_2(rgb_feat_3rd_pov, bbox_feat, img_battery, pose1, gaze=None)
if self.aggr == 'no_tom':
m1 = self.m1(out_1).mean(1)
m2 = self.m2(out_2).mean(1)
m12 = self.m12(out_1).mean(1)
m21 = self.m21(out_2).mean(1)
mc = self.mc(out_1*out_2).mean(1) # NOTE: if no_tom then mc is computed starting from the concat of out_1 and out_2
return m1, m2, m12, m21, mc, [out_1, out_2] + feats_1 + feats_2
common_mind = self.cm_proj(torch.cat([cell_1, cell_2], -1)) # (bs, 1, h)
if self.aggr == 'attn':
p1 = self.attn_left(x=out_1, context=common_mind)
p2 = self.attn_right(x=out_2, context=common_mind)
elif self.aggr == 'mult':
p1 = out_1 * common_mind
p2 = out_2 * common_mind
elif self.aggr == 'sum':
p1 = out_1 + common_mind
p2 = out_2 + common_mind
elif self.aggr == 'concat':
p1 = torch.cat([out_1, common_mind], 1)
p2 = torch.cat([out_2, common_mind], 1)
else: raise ValueError
p1 = self.act(p1)
p1 = self.ln_1(p1)
p2 = self.act(p2)
p2 = self.ln_2(p2)
if self.aggr == 'mult' or self.aggr == 'sum' or self.aggr == 'attn':
m1 = self.m1(p1).mean(1)
m2 = self.m2(p2).mean(1)
m12 = self.m12(p1).mean(1)
m21 = self.m21(p2).mean(1)
mc = self.mc(p1*p2).mean(1)
if self.aggr == 'concat':
m1 = self.m1(p1).mean(1)
m2 = self.m2(p2).mean(1)
m12 = self.m12(p1).mean(1)
m21 = self.m21(p2).mean(1)
mc = self.mc(p1*p2).mean(1) # NOTE: here I multiply p1 and p2
return m1, m2, m12, m21, mc, [out_1, out_2, common_mind] + feats_1 + feats_2
if __name__ == "__main__":
img_3rd_pov = torch.ones(3, 5, 3, 128, 128)
img_tracker = torch.ones(3, 5, 3, 128, 128)
img_battery = torch.ones(3, 5, 3, 128, 128)
pose1 = torch.ones(3, 5, 26, 3)
pose2 = torch.ones(3, 5, 26, 3)
bbox = torch.ones(3, 5, 13, 4)
tracker_id = 'skele1'
gaze = torch.ones(3, 5, 2)
mods = ['pose', 'bbox', 'rgb_3']
for agg in ['no_tom']:
model = CommonMindToMnet(hidden_dim=64, device='cpu', resnet=False, dropout=0.5, aggr=agg, mods=mods)
out = model(img_3rd_pov, img_tracker, img_battery, pose1, pose2, bbox, tracker_id, gaze)
print(out[0].shape)