75 lines
2.5 KiB
Python
75 lines
2.5 KiB
Python
|
import os
|
||
|
import torch
|
||
|
import numpy as np
|
||
|
import torch.nn.functional as F
|
||
|
import matplotlib.pyplot as plt
|
||
|
from sklearn.decomposition import PCA
|
||
|
import seaborn as sns
|
||
|
|
||
|
|
||
|
FOLDER_PATH = 'PATH_TO_FOLDER'
|
||
|
|
||
|
print(FOLDER_PATH)
|
||
|
|
||
|
MTOM_COLORS = {
|
||
|
"MN1": (110/255, 117/255, 161/255),
|
||
|
"MN2": (179/255, 106/255, 98/255),
|
||
|
"Base": (193/255, 198/255, 208/255),
|
||
|
"CG": (170/255, 129/255, 42/255),
|
||
|
"IC": (97/255, 112/255, 83/255),
|
||
|
"DB": (144/255, 63/255, 110/255)
|
||
|
}
|
||
|
|
||
|
COLORS = sns.color_palette()
|
||
|
|
||
|
sns.set_theme(style='white')
|
||
|
|
||
|
out_left_main_mods_full_test = []
|
||
|
out_right_main_mods_full_test = []
|
||
|
cell_left_main_mods_full_test = []
|
||
|
cell_right_main_mods_full_test = []
|
||
|
cm_left_main_mods_full_test = []
|
||
|
cm_right_main_mods_full_test = []
|
||
|
|
||
|
for i in range(len([filename for filename in os.listdir(FOLDER_PATH) if filename.endswith('.pt')])):
|
||
|
|
||
|
print(f'Computing analysis for test video {i}...', end='\r')
|
||
|
|
||
|
emb_file = os.path.join(FOLDER_PATH, f'{i}.pt')
|
||
|
data = torch.load(emb_file)
|
||
|
if len(data) == 13: # implicit
|
||
|
model = 'impl'
|
||
|
out_left, cell_left, out_right, cell_right, feats = data[0], data[1], data[2], data[3], data[4:]
|
||
|
elif len(data) == 12: # common mind
|
||
|
model = 'cm'
|
||
|
out_left, out_right, common_mind, feats = data[0], data[1], data[2], data[3:]
|
||
|
elif len(data) == 11: # speaker-listener
|
||
|
model = 'sl'
|
||
|
out_left, out_right, feats = data[0], data[1], data[2:]
|
||
|
else: raise ValueError("Data should have 13 (impl), others are not implemented")
|
||
|
|
||
|
# ====== PCA for left and right embeddings ====== #
|
||
|
|
||
|
out_left_pca = out_left[0].reshape(-1, 64)
|
||
|
out_right_pca = out_right[0].reshape(-1, 64)
|
||
|
out_left_and_right = np.concatenate((out_left_pca, out_right_pca), axis=0)
|
||
|
|
||
|
pca = PCA(n_components=2)
|
||
|
pca_result = pca.fit_transform(out_left_and_right)
|
||
|
|
||
|
# Separate the PCA results for each tensor
|
||
|
pca_result_left = pca_result[:out_left_pca.shape[0]]
|
||
|
pca_result_right = pca_result[out_right_pca.shape[0]:]
|
||
|
|
||
|
plt.figure(figsize=(6.8,6))
|
||
|
plt.scatter(pca_result_left[:, 0], pca_result_left[:, 1], label='$h_1$', color=MTOM_COLORS['MN1'], s=100)
|
||
|
plt.scatter(pca_result_right[:, 0], pca_result_right[:, 1], label='$h_2$', color=MTOM_COLORS['MN2'], s=100)
|
||
|
plt.xlabel('Principal Component 1', fontsize=32)
|
||
|
plt.ylabel('Principal Component 2', fontsize=32)
|
||
|
plt.xticks(fontsize=24)
|
||
|
plt.xticks([-0.4, -0.2, 0.0, 0.2, 0.4])
|
||
|
plt.yticks(fontsize=24)
|
||
|
plt.legend(fontsize=32)
|
||
|
plt.tight_layout()
|
||
|
plt.savefig(f'{FOLDER_PATH}/{i}_pca.pdf')
|
||
|
plt.close()
|