81 lines
2.4 KiB
Python
81 lines
2.4 KiB
Python
|
"""
|
||
|
from https://github.com/DavideA/c3d-pytorch/blob/master/C3D_model.py
|
||
|
"""
|
||
|
|
||
|
|
||
|
import torch.nn as nn
|
||
|
|
||
|
|
||
|
class C3D(nn.Module):
|
||
|
"""
|
||
|
The C3D network as described in [1].
|
||
|
"""
|
||
|
|
||
|
def __init__(self):
|
||
|
super(C3D, self).__init__()
|
||
|
|
||
|
self.conv1 = nn.Conv3d(3, 64, kernel_size=(3, 3, 3), padding=(1, 1, 1))
|
||
|
self.pool1 = nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2))
|
||
|
|
||
|
self.conv2 = nn.Conv3d(64, 128, kernel_size=(3, 3, 3), padding=(1, 1, 1))
|
||
|
self.pool2 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
|
||
|
|
||
|
self.conv3a = nn.Conv3d(128, 256, kernel_size=(3, 3, 3), padding=(1, 1, 1))
|
||
|
self.conv3b = nn.Conv3d(256, 256, kernel_size=(3, 3, 3), padding=(1, 1, 1))
|
||
|
self.pool3 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
|
||
|
|
||
|
self.conv4a = nn.Conv3d(256, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))
|
||
|
self.conv4b = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))
|
||
|
self.pool4 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
|
||
|
|
||
|
self.conv5a = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))
|
||
|
self.conv5b = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))
|
||
|
self.pool5 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2), padding=(0, 1, 1))
|
||
|
|
||
|
self.fc6 = nn.Linear(8192, 4096)
|
||
|
self.fc7 = nn.Linear(4096, 4096)
|
||
|
self.fc8 = nn.Linear(4096, 487)
|
||
|
|
||
|
self.dropout = nn.Dropout(p=0.5)
|
||
|
|
||
|
self.relu = nn.ReLU()
|
||
|
self.softmax = nn.Softmax()
|
||
|
|
||
|
def forward(self, x):
|
||
|
|
||
|
h = self.relu(self.conv1(x))
|
||
|
h = self.pool1(h)
|
||
|
|
||
|
h = self.relu(self.conv2(h))
|
||
|
h = self.pool2(h)
|
||
|
|
||
|
h = self.relu(self.conv3a(h))
|
||
|
h = self.relu(self.conv3b(h))
|
||
|
h = self.pool3(h)
|
||
|
|
||
|
h = self.relu(self.conv4a(h))
|
||
|
h = self.relu(self.conv4b(h))
|
||
|
h = self.pool4(h)
|
||
|
|
||
|
h = self.relu(self.conv5a(h))
|
||
|
h = self.relu(self.conv5b(h))
|
||
|
h = self.pool5(h)
|
||
|
|
||
|
h = h.view(-1, 8192)
|
||
|
h = self.relu(self.fc6(h))
|
||
|
h = self.dropout(h)
|
||
|
h = self.relu(self.fc7(h))
|
||
|
# h = self.dropout(h)
|
||
|
|
||
|
# logits = self.fc8(h)
|
||
|
# probs = self.softmax(logits)
|
||
|
|
||
|
return h
|
||
|
|
||
|
"""
|
||
|
References
|
||
|
----------
|
||
|
[1] Tran, Du, et al. "Learning spatiotemporal features with 3d convolutional networks."
|
||
|
Proceedings of the IEEE international conference on computer vision. 2015.
|
||
|
"""
|