InferringIntention/watch_and_help/stan/sampler_user.py

65 lines
1.9 KiB
Python
Raw Normal View History

2024-03-24 23:42:27 +01:00
import numpy as np
from numpy import genfromtxt
import csv
import pandas
import argparse
def sample_predciton(path, rate):
data = pandas.read_csv(path).values
task_list = [0, 1, 2]
start = 0
stop = 0
num_unique = np.unique(data[:,1])
#print('unique number', num_unique)
samples = []
for j in task_list:
for i in num_unique:
inx = np.where((data[:,1] == i) & (data[:,-2] == j))
samples.append(data[inx])
for i in range(len(samples)):
n = int(len(samples[i])*(100-rate)/100)
samples[i] = samples[i][:-n]
return np.vstack(samples)
def main():
parser = argparse.ArgumentParser(description='')
parser.add_argument('--LOSS', type=str, default='ce')
parser.add_argument('--MODEL_TYPE', type=str, default="lstmlast_cross_entropy_bs_32_iter_2000_train_task_prob" )
parser.add_argument('--EPOCHS', type=int, default=50)
parser.add_argument('--TASK', type=str, default='test_task')
args = parser.parse_args()
task = ['put_fridge', 'put_dishwasher', 'read_book']
sets = [args.TASK]
rate = [10, 20, 30, 40, 50, 60, 70, 80, 90]
for i in task:
for j in rate:
for k in sets:
if k == 'test_task':
user_num = 92
if k == 'new_test_task':
user_num = 9
for l in range(user_num):
pred_path = "prediction/" + k + "/" + "user" + str(user_num) + "/ce/" + i + "/" + "loss_weight_" + args.MODEL_TYPE + "_prediction_" + i + "_user" + str(l) + ".csv"
save_path = "prediction/" + k + "/" + "user" + str(user_num) + "/ce/" + i + "/" + "loss_weight_" + args.MODEL_TYPE + "_prediction_" + i + "_user" + str(l) + "_rate_" + str(j) + ".csv"
data = sample_predciton(pred_path, j)
head = []
for r in range(79):
head.append('act'+str(r+1))
head.append('task_name')
head.append('gt')
head.insert(0,'action_id')
pandas.DataFrame(data[:,1:]).to_csv(save_path, header=head)
if __name__ == '__main__':
main()