first commit

This commit is contained in:
Lei Shi 2024-03-24 23:42:27 +01:00
commit 83b04e2133
109 changed files with 12081 additions and 0 deletions

29
README.md Normal file
View file

@ -0,0 +1,29 @@
# Inferring Human Intentions from Predicted Action Probabilities
*Lei Shi, Paul Bürkner, Andreas Bulling*
*University of Stuttgart, Stuttgart, Germany*
Accepted by [Workshop on Theory of Mind in Human-AI Interaction at CHI 2024](https://theoryofmindinhaichi2024.wordpress.com/)
## Requirements
The code is test in Ubuntu 20.04.
```
pytorch 1.11.0
matplotlib 3.3.2
pickle 4.0
pandas 1.4.3
R 4.2.1
RStan 2.26.3
```
To install R, [see here](https://cran.r-project.org/bin/linux/ubuntu/fullREADME.html)
To install RStan, [see here](https://mc-stan.org/users/interfaces/rstan.html)
## Experiments
To train and evaluate the method on Watch-And-Help dataset, see [here](watch_and_help/README.md)
To train and evaluate the method on Keyboard and Mouse Interaction dataset, see [here](keyboard_and_mouse/README.md)

View file

@ -0,0 +1,69 @@
# Keyboard And Mouse Interactive Dataset
# Neural Network
## Requirements
The code is test in Ubuntu 20.04.
pytorch 1.11.0
matplotlib 3.3.2
pickle 4.0
pandas 1.4.3
## Train
Set training parameters in train.sh
Run `sh train.sh` to train the model
## Test
Run `sh test.sh` to run test on trained model
Predictions are saved under `prediction/task$i$/`
# Bayesian Inference
## Requirements
R 4.2.1
RStan [](https://mc-stan.org/users/interfaces/rstan.html)
Run `sh sampler_user.sh` to split prediction to 10% to 90%
Run `Rscript stan/strategy_inference_test.R` to get results of intention prediction for all users
Run `sh stan/plot_user.sh` to plot the bar chart for user intention prediction results of all action sequences
Run `Rscript stan/strategy_inference_test_full_length.R` to get results of intention prediction (0% to 100%) for all users
Run `sh stan/plot_user_length_10_steps.sh` to plot the bar chart for user intention prediction results (0% to 100%) of all action sequences
Run `sh sampler_single_act.sh` to get the predictions for each individual action sequence.
Run `Rscript stan/strategy_inference_test_all_individual_act.R` to get all action sequences (0% to 100%) of all users for intention prediction
Run `sh plot_user_all_individual.sh` to plot the bar chart for user intention prediction results of all action sequences
Run `sh plot_user_length_10_steps_all_individual.sh` to plot the user intention prediction results (0% to 100%) of all action sequences
Set training and test parameters in train.sh and test.sh
Run sh train.sh to train the model.
Run sh test.sh to run test on trained model.
Predictions are saved under prediction/task$i$/
Run sh sampler_user.sh to split prediction to 10% to 90%
Run stan/strategy_inference_test.R to get results of intention prediction for all users
Run stan/plot_user.py to plot the bar chart for user intention prediction results of all action sequences
Run stan/strategy_inference_test_full_length.R to get results of intention prediction (0% to 100%) for all users
Run stan/plot_user_length_10_users.py to plot the bar chart for user intention prediction results (0% to 100%) of all action sequences
Run stan/strategy_inference_test_all_individual_act.R to get all action sequences (0% to 100%) of all users for intention prediction
Run stan/plot_user_all_individual.py to plot the bar chart for user intention prediction results of all action sequences
Run stan/plot_user_length_10_steps_all_individual.py to plot the user intention prediction results (0% to 100%) of all action sequences

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,852 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "f5cb2ecf",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2021-09-28 16:10:28.497166: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.10.1\n"
]
}
],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import os, pdb\n",
"from sklearn.model_selection import GridSearchCV \n",
"from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn.metrics import accuracy_score\n",
"from tensorflow import keras\n",
"from keras.preprocessing.sequence import pad_sequences"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "459ad77b",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"study_data_path = \"../IntentData/\"\n",
"data = pd.read_pickle(study_data_path + \"/Preprocessing_data/clean_data.pkl\")\n",
"Task_IDs = np.arange(7).tolist()\n",
"StartIndexOffset = 0 #if set to 5 ignore first 5 elements\n",
"EndIndexOffset = 0 #if set to 5 ignore last 5 elements"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "4ab8c0cc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['Cmd', 'Toolbar'], dtype=object)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.Rule.unique()\n",
"data.columns\n",
"data.Type.unique()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "05550387",
"metadata": {},
"outputs": [],
"source": [
"# grouping by part is needed to have one ruleset for the whole part\n",
"# Participant [1,16]\n",
"# Repeat for 5 times [1,5]\n",
"# ???????? [0,6]\n",
"g = data.groupby([\"PID\", \"Part\", \"TaskID\"])"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "7819da48",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"param_grid = {'n_estimators': [10,50,100], \n",
" 'max_depth': [10,20,30]}\n",
"\n",
"grid = GridSearchCV(RandomForestClassifier(), param_grid, refit = True, verbose = 0, return_train_score=True) "
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e64a6920",
"metadata": {},
"outputs": [],
"source": [
"def createTrainTest(test_IDs, task_IDs, start_index_offset, end_index_offset, shapes=False):\n",
" assert isinstance(test_IDs, list)\n",
" assert isinstance(task_IDs, list)\n",
" # Fill data arrays\n",
" y_train = []\n",
" x_train = []\n",
" y_test = []\n",
" x_test = []\n",
" for current in g.groups.keys():\n",
" c = g.get_group(current)\n",
" if (c.TaskID.isin(task_IDs).all()):\n",
" new_rule = c.Rule.unique()[0]\n",
" if end_index_offset == 0:\n",
" new_data = c.Event.values[start_index_offset:]\n",
" else:\n",
" new_data = c.Event.values[start_index_offset:-end_index_offset]\n",
" if (c.PID.isin(test_IDs).all()):\n",
" y_test.append(new_rule)\n",
" x_test.append(new_data)\n",
" else:\n",
" y_train.append(new_rule)\n",
" x_train.append(new_data)\n",
" x_train = np.array(x_train)\n",
" y_train = np.array(y_train)\n",
" x_test = np.array(x_test)\n",
" y_test = np.array(y_test)\n",
" print('x_train\\n',x_train)\n",
" print('y_train\\n',y_train)\n",
" print('x_test\\n',x_test)\n",
" print('y_test\\n',y_test)\n",
" pdb.set_trace()\n",
" if (shapes):\n",
" print(x_train.shape)\n",
" print(y_train.shape)\n",
" print(x_test.shape)\n",
" print(y_test.shape)\n",
" print(np.unique(y_test))\n",
" print(np.unique(y_train))\n",
" return (x_train, y_train, x_test, y_test)\n",
"\n",
"def runSVMS(train_test, maxlen=None, plots=False, last_elements=False):\n",
" x_train, y_train, x_test, y_test = train_test\n",
" # Get maxlen to pad and pad\n",
" if (maxlen==None):\n",
" maxlen = 0\n",
" for d in np.concatenate((x_train,x_test)):\n",
" if len(d) > maxlen:\n",
" maxlen = len(d)\n",
" \n",
" truncating_elements = \"post\"\n",
" if last_elements:\n",
" truncating_elements = \"pre\"\n",
"\n",
" x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=maxlen, dtype='int32', padding='post', truncating=truncating_elements, value=0)\n",
" x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=maxlen, dtype='int32', padding='post', truncating=truncating_elements, value=0)\n",
"\n",
" # fitting the model for grid search \n",
" grid.fit(x_train, y_train) \n",
"\n",
" # print how our model looks after hyper-parameter tuning\n",
" if (plots==True):\n",
" print(grid.best_estimator_) \n",
"\n",
" # Predict with best SVM\n",
" pred = grid.predict(x_test)\n",
"\n",
" return accuracy_score(pred, y_test), pred, y_test "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "50dac7db",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_97850/1264473745.py:23: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n",
" x_train = np.array(x_train)\n",
"/tmp/ipykernel_97850/1264473745.py:25: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n",
" x_test = np.array(x_test)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"x_train\n",
" [array([2, 7, 7, 7, 7, 7, 7, 2, 6, 6, 6, 2, 2, 2])\n",
" array([4, 1, 4, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7])\n",
" array([5, 7, 5, 7, 5, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1])\n",
" array([3, 3, 3, 3, 3, 3, 6, 6, 5, 5, 5, 5, 5, 5, 5])\n",
" array([5, 3, 5, 3, 3, 5, 3, 5, 3, 3, 4, 4, 4, 4, 4, 4])\n",
" array([2, 6, 2, 6, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1])\n",
" array([2, 3, 2, 3, 2, 3, 2, 2, 2, 4, 4, 4, 4, 4, 4])\n",
" array([6, 6, 6, 2, 2, 2, 7, 7, 7, 7, 7, 7, 7])\n",
" array([1, 4, 4, 7, 4, 1, 1, 4, 4, 4, 7, 7, 7, 7, 7])\n",
" array([7, 5, 7, 1, 5, 7, 7, 5, 7, 7, 1, 1, 1, 1, 1])\n",
" array([3, 6, 3, 5, 3, 6, 3, 6, 3, 6, 3, 5, 5, 5, 5, 5])\n",
" array([3, 5, 3, 4, 3, 5, 3, 3, 3, 4, 4, 4, 4, 4])\n",
" array([2, 6, 2, 1, 2, 6, 2, 6, 2, 2, 1, 1, 1, 1, 1])\n",
" array([2, 3, 3, 4, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4])\n",
" array([6, 2, 7, 6, 6, 2, 2, 7, 7, 7, 7, 7])\n",
" array([4, 1, 4, 7, 4, 1, 4, 1, 7, 7, 7, 7, 7, 4, 4])\n",
" array([5, 7, 7, 1, 5, 7, 7, 7, 7, 1, 1, 1, 1, 1])\n",
" array([3, 6, 3, 5, 3, 6, 3, 3, 3, 5, 5, 5, 5, 5])\n",
" array([5, 3, 3, 4, 3, 5, 3, 5, 3, 5, 3, 4, 4, 4, 4, 4])\n",
" array([2, 6, 2, 1, 2, 6, 2, 6, 2, 2, 1, 1, 1, 1, 1])\n",
" array([2, 3, 2, 4, 2, 3, 2, 3, 2, 2, 4, 4, 4, 4, 4])\n",
" array([6, 2, 7, 6, 6, 6, 2, 2, 7, 2, 7, 7, 7, 7, 7])\n",
" array([4, 1, 4, 7, 4, 1, 4, 4, 4, 7, 7, 7, 7, 7])\n",
" array([5, 7, 7, 1, 5, 7, 5, 7, 7, 7, 1, 1, 1, 1, 1])\n",
" array([3, 6, 3, 5, 2, 2, 6, 3, 3, 6, 3, 3, 4, 4, 4, 4, 4, 4])\n",
" array([5, 3, 3, 4, 3, 5, 3, 5, 3, 3, 3, 4, 4, 4, 4, 4])\n",
" array([2, 6, 2, 1, 1, 1, 2, 6, 2, 6, 2, 2, 1, 1, 1, 1, 1])\n",
" array([2, 3, 2, 4, 2, 3, 2, 3, 2, 2, 3, 4, 4, 4, 4, 4, 4])\n",
" array([6, 2, 7, 6, 6, 2, 2, 7, 7, 7, 7, 7])\n",
" array([4, 1, 4, 7, 4, 1, 4, 4, 4, 7, 7, 7, 7, 7])\n",
" array([7, 5, 7, 1, 7, 5, 7, 7, 7, 1, 1, 1, 1, 1])\n",
" array([3, 6, 3, 5, 3, 6, 6, 3, 6, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3])\n",
" array([3, 5, 3, 4, 3, 5, 3, 5, 3, 3, 4, 4, 4, 4, 4])\n",
" array([2, 6, 2, 1, 2, 6, 2, 6, 2, 2, 1, 1, 1, 1, 1])\n",
" array([2, 3, 2, 4, 2, 3, 2, 3, 2, 2, 4, 4, 4, 4, 4])\n",
" array([2, 6, 2, 2, 6, 2, 2, 6, 2, 1, 1, 1, 1, 1, 1])\n",
" array([6, 2, 2, 2, 2, 6, 7, 7, 7, 7, 7, 7])\n",
" array([1, 4, 4, 7, 1, 4, 1, 4, 4, 4, 7, 7, 7, 7, 7])\n",
" array([2, 3, 2, 4, 2, 3, 2, 2, 2, 3, 4, 4, 4, 4, 4])\n",
" array([3, 5, 3, 4, 3, 3, 5, 3, 5, 3, 5, 4, 4, 4, 4, 4])\n",
" array([3, 6, 3, 5, 3, 6, 3, 3, 3, 6, 5, 5, 5, 5, 5])\n",
" array([5, 7, 7, 1, 7, 7, 7, 7, 5, 1, 1, 1, 1, 1])\n",
" array([2, 6, 2, 1, 2, 6, 2, 6, 2, 2, 6, 1, 1, 1, 1, 1, 1, 1])\n",
" array([6, 2, 7, 2, 2, 2, 6, 7, 7, 7, 7, 7])\n",
" array([4, 1, 4, 7, 1, 4, 1, 4, 4, 4, 7, 7, 7, 7, 7])\n",
" array([3, 2, 2, 4, 2, 2, 3, 2, 2, 3, 4, 4, 4, 4, 4])\n",
" array([3, 5, 3, 4, 3, 3, 5, 3, 5, 3, 4, 4, 4, 4, 4])\n",
" array([3, 6, 3, 5, 3, 3, 3, 6, 3, 6, 5, 5, 5, 5, 5])\n",
" array([7, 5, 5, 5, 7, 1, 7, 7, 5, 7, 5, 7, 1, 1, 1, 1, 1, 1])\n",
" array([2, 6, 2, 1, 2, 2, 2, 6, 2, 1, 1, 1, 1, 1])\n",
" array([6, 2, 7, 2, 2, 6, 6, 7, 7, 7, 7, 7])\n",
" array([1, 4, 4, 7, 1, 4, 4, 4, 4, 7, 7, 7, 7, 7])\n",
" array([2, 3, 2, 4, 2, 3, 2, 2, 2, 4, 4, 4, 4, 4])\n",
" array([3, 5, 3, 4, 3, 3, 3, 3, 5, 5, 4, 4, 4, 4, 4])\n",
" array([3, 6, 3, 5, 3, 6, 3, 3, 6, 3, 5, 5, 5, 5, 5])\n",
" array([5, 7, 7, 1, 5, 7, 7, 7, 5, 7, 5, 1, 1, 1, 1, 1])\n",
" array([2, 6, 2, 1, 2, 2, 2, 6, 2, 2, 6, 1, 1, 1, 1, 1])\n",
" array([6, 2, 7, 2, 2, 2, 2, 6, 6, 7, 7, 7, 7, 7])\n",
" array([1, 4, 4, 7, 4, 4, 4, 4, 1, 1, 7, 7, 7, 7, 7])\n",
" array([2, 3, 2, 4, 2, 3, 2, 2, 2, 4, 4, 4, 4, 4])\n",
" array([3, 5, 3, 4, 3, 5, 3, 3, 3, 3, 3, 5, 3, 5, 4, 4, 4, 4, 4])\n",
" array([3, 6, 3, 5, 3, 3, 6, 3, 3, 5, 5, 5, 5, 5])\n",
" array([7, 5, 7, 1, 7, 7, 7, 5, 7, 5, 1, 1, 1, 1, 1])\n",
" array([2, 6, 2, 1, 2, 2, 2, 2, 6, 6, 6, 1, 1, 1, 1, 1])\n",
" array([6, 2, 7, 2, 2, 6, 6, 7, 7, 7, 7, 7])\n",
" array([1, 4, 4, 7, 1, 4, 1, 4, 4, 4, 7, 7, 7, 7, 7])\n",
" array([2, 3, 2, 4, 2, 2, 3, 2, 2, 3, 4, 4, 4, 4, 4])\n",
" array([3, 5, 3, 4, 3, 5, 3, 3, 3, 5, 3, 4, 4, 4, 4, 4, 4, 4, 4])\n",
" array([3, 6, 3, 5, 3, 6, 3, 3, 6, 3, 5, 5, 5, 5, 5])\n",
" array([7, 5, 7, 1, 7, 7, 5, 5, 7, 7, 1, 1, 1, 1, 1])\n",
" array([3, 5, 3, 4, 4, 4, 3, 5, 3, 5, 5, 3, 3])\n",
" array([6, 3, 5, 5, 5, 5, 5, 5, 6, 3, 6, 3, 3, 3, 3])\n",
" array([2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 3])\n",
" array([1, 7, 1, 7, 7, 7, 7, 7])\n",
" array([2, 6, 2, 1, 1, 1, 6, 2, 1, 2, 6, 1, 2, 1])\n",
" array([6, 2, 7, 2, 2, 6, 6, 7, 7, 7, 7, 7])\n",
" array([7, 5, 7, 1, 7, 7, 1, 1, 1, 1, 1, 1, 5, 7, 5, 7])\n",
" array([3, 3, 5, 3, 3, 5, 3, 3, 3, 3, 5])\n",
" array([2, 3, 3, 5, 3, 3, 3, 3, 2]) array([2, 3, 2, 2, 2, 2, 2, 3])\n",
" array([1, 7, 1, 1, 7, 7, 7, 7, 7])\n",
" array([2, 6, 2, 1, 2, 6, 2, 6, 2, 2, 1, 1, 1, 1, 1])\n",
" array([6, 2, 6, 7, 7, 2, 2, 2, 6, 7, 7, 7, 7, 7])\n",
" array([7, 5, 7, 1, 5, 7, 7, 5, 7, 7, 1, 1, 1, 1, 1])\n",
" array([5, 3, 3, 3, 5, 3, 5, 3, 5, 3])\n",
" array([6, 3, 3, 5, 6, 3, 3, 6, 3, 6, 3, 5, 5, 5, 5, 5])\n",
" array([2, 3, 2, 2, 2, 3, 2, 3, 2]) array([1, 7, 1, 1, 7, 7, 7, 7, 7])\n",
" array([2, 6, 2, 1, 2, 2, 2, 2, 6, 1, 1, 1, 1, 1])\n",
" array([6, 2, 7, 7, 7, 2, 2, 7, 6, 7, 7, 2])\n",
" array([5, 7, 7, 1, 1, 7, 5, 7, 1, 1, 7, 1, 7, 1])\n",
" array([3, 5, 3, 3, 5, 3, 5, 3, 5, 3])\n",
" array([3, 6, 3, 5, 3, 6, 6, 3, 3, 6, 3, 6, 5, 5, 5, 5, 5, 6, 6, 6])\n",
" array([2, 2, 3, 2, 2, 3, 2, 2, 3]) array([1, 7, 7, 1, 7, 7, 7, 7, 1])\n",
" array([2, 6, 2, 1, 2, 6, 2, 6, 2, 6, 2, 1, 1, 1, 1, 1])\n",
" array([6, 2, 7, 6, 6, 2, 2, 2, 2, 7, 7, 4, 7, 7, 7])\n",
" array([7, 7, 5, 1, 7, 5, 7, 5, 7, 7, 1, 1, 1, 1, 1, 7])\n",
" array([3, 5, 3, 5, 3, 3, 5, 3, 3])\n",
" array([3, 6, 3, 5, 3, 3, 3, 6, 3, 5, 5, 5, 5, 5])\n",
" array([2, 3, 2, 2, 2, 2, 2, 3]) array([1, 7, 1, 1, 7, 7, 7, 7, 7])\n",
" array([2, 6, 2, 1, 1, 1, 1, 1, 1, 1, 2, 6, 6, 2, 2, 6, 2])\n",
" array([6, 2, 7, 6, 6, 6, 6, 2, 7, 7, 7, 7, 7])\n",
" array([7, 5, 7, 1, 1, 1, 1, 1, 1, 7, 7, 5, 7, 5, 7, 5])\n",
" array([2, 3, 2, 4, 2, 3, 2, 3, 2, 2, 4, 4, 4, 4, 4])\n",
" array([4, 1, 4, 4, 4, 4, 4, 7, 4, 1, 4, 1, 4, 1, 4, 7, 7, 7, 7, 7])\n",
" array([7, 5, 7, 1, 1, 1, 1, 1, 1, 5, 7, 5, 7, 7, 7])\n",
" array([6, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 6])\n",
" array([4, 5, 3, 3, 3, 3, 3, 3, 3, 5, 3, 4, 4, 4, 4, 4])\n",
" array([6, 6, 2, 7, 7, 7, 7, 7, 7, 6, 2, 2, 2])\n",
" array([6, 3, 3, 5, 5, 5, 5, 5, 5, 3, 6, 3, 3, 6, 3])\n",
" array([2, 3, 2, 4, 2, 3, 2, 2, 3, 2, 4, 4, 4, 4, 4])\n",
" array([4, 1, 4, 7, 4, 4, 4, 1, 4, 1, 7, 7, 7, 7, 7])\n",
" array([1, 5, 7, 7, 1, 7, 7, 7, 7, 5, 5])\n",
" array([6, 2, 2, 1, 1, 2, 1, 2, 6, 1, 2, 1, 2, 6, 1])\n",
" array([5, 4, 3, 4, 5, 3, 4, 3, 4, 3, 4, 5, 3, 4])\n",
" array([6, 2, 7, 7, 6, 7, 2, 6, 7, 7, 6, 7])\n",
" array([6, 3, 3, 5, 5, 1, 1, 3, 5, 6, 3, 5, 6, 3, 5, 6, 3])\n",
" array([2, 3, 2, 4, 2, 3, 2, 2, 2, 4, 4, 4, 4, 4])\n",
" array([4, 1, 4, 7, 7, 4, 1, 7, 4, 7, 4, 1, 4, 1, 7, 7])\n",
" array([7, 4, 5, 7, 1, 1, 7, 1, 7, 5, 5, 7, 2, 7, 7, 7])\n",
" array([6, 2, 2, 1, 2, 1, 2, 6, 6, 2, 6, 2, 1, 1, 1])\n",
" array([5, 3, 3, 4, 3, 4, 4, 3, 4, 5, 3, 4, 4, 3])\n",
" array([6, 2, 7, 7, 2, 7, 7, 6, 2, 2, 7, 7])\n",
" array([1, 3, 1, 6, 3, 3, 5, 3, 5, 5, 6, 3, 5, 3, 5, 5, 3])\n",
" array([2, 3, 4, 3, 4, 2, 3, 2, 3, 4, 4, 2, 3, 3, 4, 3, 3, 4, 3, 2, 3, 2])\n",
" array([4, 1, 4, 7, 7, 4, 1, 4, 7, 7, 4, 7, 4, 1, 7])\n",
" array([7, 5, 7, 1, 1, 7, 5, 1, 7, 7, 7, 1, 1, 1, 7, 5])\n",
" array([6, 2, 2, 1, 1, 1, 1, 1, 1, 2, 6, 2, 2, 2])\n",
" array([5, 3, 3, 4, 3, 5, 3, 5, 3, 3, 4, 4, 4, 4, 4])\n",
" array([6, 2, 7, 2, 2, 6, 6, 7, 7, 7, 7, 7])\n",
" array([6, 3, 3, 5, 3, 6, 6, 3, 3, 3, 5, 5, 5, 5, 5])\n",
" array([2, 3, 2, 4, 2, 2, 2, 3, 2, 3, 4, 4, 4, 4, 4])\n",
" array([4, 1, 4, 7, 7, 7, 7, 7, 7, 4, 1, 4, 4, 1, 4, 1])\n",
" array([7, 5, 7, 1, 1, 7, 5, 1, 7, 7, 5, 1, 1, 1, 7])\n",
" array([6, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 6, 1])\n",
" array([5, 3, 3, 4, 3, 3, 3, 3, 5, 4, 4, 4, 4, 4])\n",
" array([6, 2, 7, 2, 2, 6, 6, 7, 7, 7, 7, 7])\n",
" array([6, 3, 3, 5, 5, 3, 6, 3, 5, 5, 6, 3, 5, 5, 3, 5, 5])\n",
" array([6, 2, 7, 7, 7, 7, 7, 7, 6, 6, 2, 2])\n",
" array([5, 3, 4, 3, 3, 3, 3, 3, 5, 4, 4, 4, 4, 4])\n",
" array([5, 7, 1, 7, 1, 3, 1, 1, 3, 1, 1, 1, 1, 7, 7, 7, 7, 5, 5])\n",
" array([1, 7, 4, 4, 1, 1, 7, 7, 7, 7, 7, 4, 4, 4, 1, 4])\n",
" array([6, 2, 1, 2, 2, 2, 2, 2, 6, 6])\n",
" array([6, 3, 5, 5, 6, 6, 6, 6, 6, 3, 3, 5, 5, 5, 5, 5])\n",
" array([2, 3, 2, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4])\n",
" array([6, 2, 7, 2, 2, 2, 6, 7, 7, 7, 7, 7])\n",
" array([3, 5, 4, 3, 3, 3, 3, 3, 5, 3, 5, 4, 4, 4, 4, 4])\n",
" array([7, 5, 7, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 5, 5, 5, 5])\n",
" array([1, 4, 7, 4, 7, 7, 7, 7, 7, 1, 1])\n",
" array([6, 2, 2, 1, 2, 2, 2, 2, 6, 6, 1, 1, 1, 1, 1])\n",
" array([6, 3, 3, 5, 3, 6, 6, 3, 3, 3, 6])\n",
" array([2, 3, 2, 4, 2, 3, 2, 2, 2, 4, 4, 4, 4, 4])\n",
" array([6, 7, 2, 2, 2, 6, 6, 7, 7, 7, 7, 7])\n",
" array([3, 5, 3, 4, 3, 3, 3, 3, 5, 5, 4, 4, 4, 4, 4])\n",
" array([7, 5, 7, 1, 7, 5, 7, 7, 7, 5, 1, 1, 1, 1, 1])\n",
" array([1, 4, 4, 7, 4, 4, 4, 4, 7, 7, 7, 7, 7, 1, 1, 1])\n",
" array([2, 6, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 6, 6])\n",
" array([3, 6, 3, 5, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 6])\n",
" array([2, 3, 2, 4, 2, 3, 2, 2, 3, 2, 4, 4, 4, 4, 4])\n",
" array([2, 2, 6, 2, 7, 6, 2, 2, 6, 2, 2, 7, 7, 7, 7, 7, 7])\n",
" array([5, 3, 3, 4, 3, 3, 5, 5, 3, 3, 5, 4, 4, 4, 4, 4])\n",
" array([7, 5, 1, 7, 2, 2, 3, 7, 7, 7, 7, 5, 1, 1, 1, 1, 1])\n",
" array([1, 4, 4, 7, 1, 4, 7, 7, 7, 7, 7, 4, 1, 1, 4, 4])\n",
" array([6, 2, 2, 1, 2, 2, 2, 2, 6, 6, 1, 1, 1, 1, 1])\n",
" array([3, 6, 5, 3, 3, 3, 3, 3, 6, 5, 5, 5, 5, 5])\n",
" array([2, 3, 2, 4, 2, 3, 2, 2, 3, 2, 3, 4, 4, 4, 4, 4])\n",
" array([6, 2, 7, 2, 2, 2, 6, 7, 7, 7, 7, 7])\n",
" array([5, 3, 3, 4, 3, 3, 3, 3, 5, 5, 4, 4, 4, 4, 4])\n",
" array([7, 5, 7, 1, 1, 1, 1, 1, 1, 5, 5, 7, 4, 7, 7, 7])\n",
" array([4, 1, 4, 7, 7, 7, 7, 7, 7, 4, 1, 4, 1, 4, 4])\n",
" array([6, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 6, 6])\n",
" array([6, 3, 3, 5, 3, 3, 3, 3, 6, 5, 5, 5, 5, 5])\n",
" array([2, 3, 2, 4, 2, 3, 2, 2, 3, 2, 4, 4, 4, 4, 4])\n",
" array([3, 5, 4, 3, 3, 5, 5, 3, 3, 5, 3, 5, 4, 4, 4, 4, 4, 4])\n",
" array([2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 4, 4, 4, 4, 4, 4])\n",
" array([2, 3, 3, 2, 3, 3, 2, 3, 3])\n",
" array([2, 6, 2, 2, 2, 6, 2, 6, 2, 1, 1, 1, 1, 1, 1])\n",
" array([1, 4, 4, 1, 4, 1, 4, 4, 4, 7, 7, 7, 7, 7, 7])\n",
" array([7, 5, 1, 7, 1, 7, 5, 1, 7, 1, 7, 1, 7, 5, 1])\n",
" array([2, 2, 2, 2, 7, 7, 7, 7, 7, 7, 2, 2, 7, 2, 6, 2, 6, 6, 2, 2, 6])\n",
" array([5, 3, 5, 3, 3, 3, 5, 3, 3, 5, 4, 4, 4, 4, 4, 4])\n",
" array([3, 2, 4, 3, 3, 2, 4, 2, 4, 4, 2, 2, 3, 4, 4, 2, 3, 4])\n",
" array([2, 3, 3, 3, 4, 2, 3, 4, 3, 4, 2, 3, 4])\n",
" array([6, 2, 1, 2, 1, 2, 6, 1, 2, 6, 1, 2, 1, 2, 6, 1])\n",
" array([4, 1, 7, 4, 1, 1, 7, 1, 4, 7, 4, 7, 4, 7, 1, 4, 7])\n",
" array([7, 5, 1, 7, 1, 7, 7, 1, 7, 5, 1, 7, 5, 1, 7, 1])\n",
" array([6, 7, 2, 7, 2, 7, 6, 7, 2, 2, 2, 2, 7, 6])\n",
" array([3, 5, 4, 3, 4, 4, 3, 5, 4, 3, 5, 4, 3, 4, 3, 4])\n",
" array([2, 3, 4, 2, 4, 2, 3, 4, 2, 4, 2, 4, 2, 3, 4])\n",
" array([6, 3, 3, 4, 3, 4, 6, 3, 4, 3, 4, 4, 3])\n",
" array([2, 6, 1, 2, 1, 2, 6, 1, 2, 1, 2, 6, 1, 2, 1, 2])\n",
" array([1, 4, 7, 4, 7, 1, 4, 7, 1, 4, 7, 4, 7, 7, 1, 4])\n",
" array([7, 4, 5, 1, 7, 7, 1, 7, 7, 1, 7, 5, 1, 7, 1, 7, 1])\n",
" array([6, 7, 2, 7, 6, 7, 2, 7, 2, 7, 6, 7])\n",
" array([3, 5, 3, 3, 3, 3, 3, 5, 4, 4, 4, 4, 4, 4])\n",
" array([2, 3, 2, 2, 2, 2, 3, 4, 4, 4, 4, 2, 4, 4])\n",
" array([2, 3, 3, 2, 3, 2, 3, 2, 3, 3, 4, 4, 2, 6, 2, 6, 2, 6, 2, 6])\n",
" array([2, 6, 1, 2, 1, 2, 1, 2, 2, 6, 1, 1, 1, 1, 2, 1])\n",
" array([4, 1, 7, 1, 7, 1, 7, 1, 4, 7, 1, 4, 7, 1, 7, 7])\n",
" array([7, 5, 1, 7, 1, 7, 5, 1, 7, 1, 7, 5, 1, 7, 5, 1])\n",
" array([6, 7, 2, 7, 6, 7, 6, 7, 6, 7, 2, 7])\n",
" array([3, 5, 3, 3, 3, 5, 3, 3, 4, 4, 4, 4, 4, 4])\n",
" array([2, 3, 2, 2, 2, 3, 2, 2, 3, 4, 4, 4, 4, 4, 4])\n",
" array([6, 3, 3, 5, 5, 5, 5, 3, 5, 3, 5, 3, 6, 5, 3, 6, 5])\n",
" array([2, 6, 1, 2, 1, 2, 6, 1, 2, 1, 2, 2, 2, 1, 2, 1])\n",
" array([1, 4, 7, 4, 7, 1, 4, 7, 4, 7, 1, 4, 7, 4, 7])\n",
" array([7, 5, 1, 7, 1, 7, 5, 1, 7, 1, 7, 1, 7, 5])\n",
" array([6, 6, 7, 2, 7, 6, 7, 6, 7, 6, 7, 2, 7])\n",
" array([2, 3, 2, 6, 3, 5, 5, 3, 6, 3, 6, 3, 6, 3, 5, 5, 5, 5])\n",
" array([3, 5, 3, 4, 3, 5, 3, 3, 3, 4, 4, 4, 4, 4])\n",
" array([2, 6, 2, 1, 1, 1, 1, 1, 1, 2, 2, 6, 2, 6, 2])\n",
" array([2, 3, 3, 4, 2, 3, 3, 3, 2, 2, 2, 4, 4, 4, 4, 4, 2, 3, 3, 2, 3, 2])\n",
" array([4, 4, 1, 7, 4, 4, 4, 4, 1, 1, 1, 7, 7, 7, 7, 7])\n",
" array([6, 2, 7, 2, 2, 2, 6, 7, 7, 7, 7, 7])\n",
" array([7, 5, 7, 1, 7, 7, 7, 5, 7, 5, 1, 1, 1, 1, 1])\n",
" array([6, 3, 3, 5, 3, 3, 6, 3, 3, 6, 5, 5, 5, 5, 5])\n",
" array([5, 3, 3, 4, 4, 4, 4, 4, 4, 3, 5, 3, 3, 3, 5])\n",
" array([6, 2, 2, 1, 2, 6, 2, 2, 6, 6, 2, 1, 1, 1, 1, 1])\n",
" array([2, 3, 2, 4, 2, 3, 2, 2, 3, 2, 3, 4, 4, 4, 4, 4])\n",
" array([4, 1, 4, 7, 4, 1, 1, 4, 4, 4, 7, 7, 7, 7, 7])\n",
" array([6, 2, 7, 2, 6, 6, 2, 7, 7, 7, 7, 7])\n",
" array([7, 5, 7, 1, 7, 7, 7, 5, 7, 5, 1, 1, 1, 1, 1])\n",
" array([2, 3, 3, 5, 2, 2, 3, 6, 3, 3, 2, 6, 6, 3, 3, 3, 6, 5, 5, 5, 5, 5])\n",
" array([5, 3, 3, 4, 3, 5, 3, 5, 3, 5, 3, 4, 4, 4, 4, 4])\n",
" array([2, 6, 2, 1, 2, 2, 2, 6, 2, 1, 1, 1, 1, 1])\n",
" array([2, 2, 2, 3, 2, 4, 2, 3, 2, 2, 2, 3, 2, 4, 4, 4, 4, 4])\n",
" array([4, 1, 4, 7, 4, 4, 4, 4, 1, 7, 7, 7, 7, 7, 1])\n",
" array([6, 2, 7, 6, 6, 2, 2, 7, 7, 7, 7, 7])\n",
" array([7, 5, 7, 1, 1, 7, 1, 7, 5, 1, 7, 1, 7, 1])\n",
" array([6, 3, 3, 5, 3, 6, 5, 5, 3, 6, 5, 3, 5, 3, 5])\n",
" array([3, 5, 3, 4, 3, 3, 5, 3, 3, 5, 4, 4, 4, 4, 4])\n",
" array([2, 6, 2, 1, 2, 2, 6, 2, 6, 2, 2, 6, 3, 3, 1, 1, 1, 1, 1])\n",
" array([2, 3, 2, 4, 2, 3, 4, 4, 2, 3, 4, 2, 3, 3, 4, 2, 3, 4])\n",
" array([3, 3, 1, 4, 4, 7, 4, 4, 4, 4, 1, 7, 7, 7, 7, 7])\n",
" array([6, 2, 7, 2, 2, 7, 7, 6, 6, 7, 7, 7, 7, 7])\n",
" array([7, 5, 7, 1, 7, 7, 5, 5, 5, 7, 7, 5, 1, 1, 1, 1, 1])\n",
" array([3, 6, 3, 5, 5, 3, 5, 5, 3, 6, 5, 3, 5, 3, 6, 5])\n",
" array([5, 3, 3, 3, 4, 4, 3, 5, 4, 3, 4, 3, 5, 4])\n",
" array([6, 2, 2, 1, 2, 2, 6, 2, 6, 2, 1, 1, 1, 1, 1])\n",
" array([2, 3, 2, 4, 2, 2, 3, 2, 3, 2, 4, 4, 4, 4, 4])\n",
" array([1, 4, 4, 7, 1, 4, 1, 4, 1, 4, 4, 7, 7, 7, 7, 7])\n",
" array([6, 2, 7, 7, 2, 7, 2, 7, 6, 7, 6, 7, 7, 6])\n",
" array([7, 5, 7, 1, 7, 1, 1, 7, 1, 7, 5, 1, 7, 5, 1])\n",
" array([7, 5, 1, 7, 2, 2, 5, 5, 5, 5, 5, 2, 2, 2, 2, 1, 5, 5, 5, 5, 2, 7,\n",
" 2, 7, 1, 1, 1, 1])\n",
" array([2, 3, 2, 4, 4, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 2])\n",
" array([2, 6, 2, 1, 2, 2, 2, 2, 6, 6, 1, 1, 1, 1, 1])\n",
" array([3, 5, 4, 3, 4, 3, 5, 4, 3, 3, 4, 3, 5, 4, 4, 3, 3, 5, 4])\n",
" array([2, 6, 7, 2, 7, 2, 2, 2, 6, 7, 2, 6, 7, 2, 7, 2, 6, 7])\n",
" array([2, 3, 5, 3, 3, 5, 2, 3, 5, 2, 3, 3, 5, 3, 4, 5, 2, 3, 5])\n",
" array([1, 4, 7, 4, 7, 4, 1, 7, 4, 7, 1, 4, 7, 4, 7])\n",
" array([5, 7, 1, 7, 1, 5, 7, 1, 7, 5, 1, 7, 1, 7, 1])\n",
" array([2, 3, 1, 2, 1, 2, 1, 2, 1, 3, 2, 3, 1])\n",
" array([2, 6, 1, 6, 1, 6, 1, 2, 6, 1, 2, 6, 1, 6, 1])\n",
" array([5, 3, 4, 3, 3, 3, 4, 3, 4, 3, 4, 4, 3, 5, 4, 3, 5, 4])\n",
" array([6, 7, 2, 7, 2, 7, 6, 7, 6, 7, 2, 7])\n",
" array([2, 3, 5, 3, 5, 3, 5, 3, 5, 6, 3, 2, 6, 5, 5, 3])\n",
" array([1, 4, 7, 4, 7, 4, 1, 7, 1, 4, 7, 4, 7, 4, 7])\n",
" array([5, 7, 1, 7, 1, 5, 7, 1, 7, 5, 1, 7, 1, 1, 5, 7])\n",
" array([3, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 3, 4])\n",
" array([2, 6, 1, 2, 1, 2, 6, 1, 2, 6, 1, 2, 6, 1, 2, 1])\n",
" array([3, 5, 4, 5, 4, 5, 4, 5, 4, 5, 3, 4, 4, 5])\n",
" array([7, 2, 6, 7, 7, 2, 2, 6, 7, 2, 7, 2, 7, 6, 7])\n",
" array([6, 3, 5, 3, 5, 6, 5, 5, 3, 5, 3, 5, 5, 5, 3, 3, 5, 3, 5])\n",
" array([1, 4, 7, 4, 7, 4, 1, 7, 4, 1, 7, 4, 7, 4, 1, 7])\n",
" array([5, 7, 1, 7, 1, 7, 1, 5, 7, 1, 5, 7, 1, 7, 1])\n",
" array([3, 2, 4, 2, 4, 4, 2, 4, 2, 3, 4, 2, 3, 4, 4, 2, 3])\n",
" array([2, 6, 1, 2, 1, 2, 6, 1, 2, 6, 1, 2, 1, 2, 1])\n",
" array([5, 3, 5, 5, 4, 3, 4, 3, 4, 3, 5, 4, 3, 5, 4, 4, 3, 5])\n",
" array([3, 6, 3, 7, 2, 7, 6, 7, 2, 7, 6, 2, 6, 7])\n",
" array([6, 3, 5, 3, 5, 6, 3, 5, 5, 3, 5, 6, 3, 5, 5, 3, 6])\n",
" array([1, 4, 7, 4, 7, 4, 1, 7, 4, 1, 7, 4, 7, 4, 7])\n",
" array([5, 7, 1, 7, 1, 7, 1, 7, 7, 1, 5, 7, 1, 5, 7, 1])\n",
" array([3, 2, 4, 2, 4, 3, 2, 4, 2, 4, 3, 2, 4, 2, 4])\n",
" array([2, 6, 1, 2, 1, 2, 6, 1, 2, 6, 1, 2, 1, 2, 6, 1])\n",
" array([5, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 5, 4])\n",
" array([6, 7, 2, 7, 2, 6, 2, 6, 2, 2, 5, 7, 6, 7, 2, 7, 2, 7])\n",
" array([6, 3, 5, 3, 5, 3, 6, 5, 5, 3, 5, 3, 6, 5, 6, 3, 5])\n",
" array([1, 4, 7, 4, 7, 4, 7, 4, 7, 4, 7, 1, 4, 7])\n",
" array([7, 5, 5, 7, 5, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1])\n",
" array([5, 5, 5, 3, 3, 3, 3, 3, 3, 3])\n",
" array([7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 2, 2])\n",
" array([2, 3, 2, 3, 2, 3, 2, 2, 2])\n",
" array([1, 1, 1, 4, 1, 4, 4, 4, 7, 7, 7, 7, 7, 7])\n",
" array([2, 6, 2, 6, 2, 6, 2, 6, 2, 2, 1, 1, 1, 1, 1, 1])\n",
" array([3, 6, 3, 6, 3, 6, 3, 3, 3, 5, 5, 5, 5, 5, 5])\n",
" array([7, 5, 7, 5, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1])\n",
" array([5, 3, 5, 3, 3, 3, 3, 3, 4, 4, 4, 4])\n",
" array([6, 6, 2, 2, 2, 2, 7, 7, 7, 7, 7, 7])\n",
" array([2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 4, 4, 4, 4, 4, 4])\n",
" array([1, 4, 1, 4, 1, 4, 4, 4, 4, 7, 7, 7, 7, 7, 7])\n",
" array([6, 2, 6, 2, 6, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1])\n",
" array([6, 3, 6, 3, 6, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5])\n",
" array([7, 5, 7, 5, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1])\n",
" array([5, 3, 5, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4])\n",
" array([6, 6, 6, 6, 2, 2, 2, 7, 7, 7, 7, 7, 7])\n",
" array([2, 3, 2, 3, 2, 3, 2, 2, 2, 4, 4, 4, 4, 4, 4])\n",
" array([1, 1, 1, 4, 4, 4, 4, 4, 4, 7, 7, 7, 7, 7, 7])\n",
" array([6, 2, 2, 6, 2, 6, 2, 6, 2, 2, 1, 1, 1, 1, 1, 1])\n",
" array([3, 6, 3, 6, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5])\n",
" array([5, 7, 5, 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1])\n",
" array([5, 3, 3, 5, 3, 5, 3, 3, 3, 4, 4, 4, 4, 4, 4])\n",
" array([6, 6, 6, 6, 2, 2, 7, 7, 7, 7, 7, 7, 7])\n",
" array([2, 3, 3, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4])\n",
" array([1, 1, 1, 4, 4, 4, 4, 4, 4, 7, 7, 7, 7, 7, 7])\n",
" array([2, 2, 2, 2, 2, 2, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1])\n",
" array([3, 3, 3, 3, 3, 3, 6, 6, 7, 5, 5, 5, 5, 5, 5])\n",
" array([7, 5, 7, 5, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1])\n",
" array([5, 3, 3, 3, 5, 3, 3, 5, 3, 5, 4, 4, 4, 4, 4, 4])\n",
" array([6, 6, 6, 6, 2, 2, 7, 7, 7, 7, 7, 7])\n",
" array([2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 4, 4, 4, 4, 4])\n",
" array([4, 4, 4, 4, 4, 4, 1, 1, 7, 7, 7, 7, 7, 7])\n",
" array([2, 2, 2, 2, 2, 2, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1])\n",
" array([5, 5, 5, 5, 5, 5, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6])\n",
" array([7, 5, 7, 1, 1, 7, 7, 7, 7, 5, 1, 1, 1, 1])\n",
" array([2, 6, 1, 2, 1, 2, 1, 2, 6, 2, 6, 1, 1, 1, 2])\n",
" array([6, 2, 7, 7, 2, 6, 2, 2, 7, 7, 7, 7, 2, 6])\n",
" array([5, 3, 3, 4, 4, 3, 4, 3, 3, 4, 3, 5, 4, 3, 5, 4])\n",
" array([2, 3, 2, 4, 2, 3, 2, 3, 2, 2, 4, 4, 4, 4, 4])\n",
" array([3, 6, 3, 5, 3, 3, 6, 3, 6, 3, 6, 5, 5, 5, 5, 5])\n",
" array([4, 1, 4, 7, 7, 4, 7, 4, 7, 1, 4, 7, 4, 6, 6, 7, 6])\n",
" array([7, 5, 7, 1, 1, 7, 5, 1, 7, 1, 7, 5, 1, 7, 1, 5])\n",
" array([2, 6, 2, 1, 1, 2, 1, 2, 1, 2, 6, 1, 2, 6, 1])\n",
" array([6, 2, 7, 7, 6, 7, 2, 7, 6, 7, 2, 7])\n",
" array([5, 3, 3, 4, 4, 3, 5, 3, 3, 5, 3, 4, 4, 4, 4])\n",
" array([2, 3, 1, 1, 2, 4, 4, 2, 4, 2, 3, 2, 3, 4, 4, 2, 4])\n",
" array([3, 6, 3, 5, 5, 3, 6, 5, 3, 5, 6, 3, 5, 3, 5])\n",
" array([1, 4, 4, 7, 7, 1, 4, 5, 5, 7, 4, 7, 4, 7, 1, 4, 7])\n",
" array([7, 5, 7, 1, 7, 5, 1, 7, 5, 1, 7, 5, 1, 7, 1, 7, 1])\n",
" array([2, 6, 2, 1, 1, 2, 6, 2, 1, 1, 2, 1, 2, 1])\n",
" array([6, 2, 7, 7, 6, 2, 7, 6, 7, 2, 7, 6, 7])\n",
" array([5, 3, 3, 4, 4, 3, 4, 3, 5, 3, 5, 4, 4, 3, 4])\n",
" array([2, 3, 2, 4, 4, 2, 3, 4, 2, 4, 2, 3, 4, 2, 3, 3, 4])\n",
" array([6, 3, 3, 5, 5, 3, 3, 6, 3, 3, 5, 5, 5, 5])\n",
" array([4, 1, 4, 7, 7, 4, 7, 4, 7, 4, 7, 1, 4, 7])\n",
" array([7, 5, 7, 1, 7, 5, 1, 7, 1, 5, 7, 1, 7, 1, 1, 5, 1, 7, 1])\n",
" array([2, 6, 2, 1, 1, 2, 1, 2, 1, 2, 6, 1, 2, 1])\n",
" array([6, 2, 7, 7, 6, 7, 2, 7, 6, 7, 2, 7])\n",
" array([5, 3, 3, 4, 5, 3, 4, 5, 3, 4, 3, 4, 3, 4, 3, 5, 4])\n",
" array([2, 3, 2, 4, 4, 2, 3, 4, 2, 4, 2, 3, 4, 2, 4])\n",
" array([3, 6, 3, 5, 5, 3, 5, 3, 6, 5, 3, 6, 5, 3, 3, 5])\n",
" array([4, 1, 4, 7, 4, 7, 7, 4, 7, 4, 1, 1, 4, 7, 7])\n",
" array([7, 5, 7, 1, 1, 7, 1, 7, 5, 5, 1, 7, 1, 7, 5, 1])\n",
" array([2, 6, 2, 1, 1, 1, 1, 1, 1, 2, 6, 2, 2, 2, 6])\n",
" array([6, 2, 7, 7, 6, 7, 6, 7, 2, 7, 2, 7])\n",
" array([3, 5, 3, 4, 4, 5, 3, 4, 3, 4, 5, 3, 4, 3, 4])\n",
" array([2, 3, 2, 4, 4, 2, 4, 2, 4, 2, 3, 4, 2, 4])\n",
" array([6, 3, 3, 5, 5, 3, 6, 3, 5, 5, 3, 6, 5, 3, 6, 5])\n",
" array([1, 4, 4, 7, 7, 4, 1, 7, 4, 4, 4, 7, 7, 7, 1])\n",
" array([2, 3, 2, 2, 3, 2, 3, 2, 2])\n",
" array([7, 5, 7, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 5, 7, 5])\n",
" array([2, 6, 1, 2, 1, 1, 2, 6, 2, 6, 2, 2, 1, 1, 1, 1, 1])\n",
" array([5, 3, 3, 3, 3, 3, 5, 5, 3, 4, 4, 4, 4])\n",
" array([3, 6, 3, 5, 3, 6, 3, 6, 3, 3, 5, 5, 5, 5, 5])\n",
" array([6, 2, 7, 2, 2, 2, 6, 7, 7, 7, 7, 7, 7])\n",
" array([1, 4, 4, 7, 7, 7, 7, 7, 7, 1, 4, 4, 4])\n",
" array([2, 3, 2, 4, 4, 4, 4, 4, 4, 2, 3, 2, 3, 2, 2])\n",
" array([1, 7, 5, 7, 7, 5, 7, 5, 7, 5, 7, 1, 1, 1, 1, 1])\n",
" array([2, 6, 2, 1, 2, 6, 2, 6, 2, 2, 1, 1, 1, 1, 1])\n",
" array([4, 3, 5, 3, 4, 3, 5, 5, 3, 3, 5, 3, 4, 4, 4, 4, 4])\n",
" array([6, 3, 3, 5, 3, 3, 3, 6, 3, 6, 5, 5, 5, 5, 5])\n",
" array([6, 2, 7, 2, 2, 2, 6, 7, 7, 7, 7, 7])\n",
" array([4, 4, 7, 3, 7, 3, 1, 1, 4, 4, 1, 4, 4, 7, 7, 7, 7])\n",
" array([2, 3, 2, 4, 2, 2, 2, 3, 3, 2, 3, 4, 4, 4, 4, 4])\n",
" array([7, 5, 7, 1, 7, 5, 7, 7, 5, 7, 1, 1, 1, 1, 1])\n",
" array([2, 6, 2, 1, 2, 6, 2, 6, 2, 6, 2, 1, 1, 1, 1, 1])\n",
" array([3, 3, 5, 4, 3, 5, 3, 5, 3, 3, 4, 4, 4, 4, 4])\n",
" array([5, 6, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 6, 6, 6])\n",
" array([6, 2, 7, 6, 6, 2, 2, 7, 7, 7, 7, 7])\n",
" array([4, 1, 4, 7, 4, 4, 4, 4, 1, 1, 7, 7, 7, 7, 7])\n",
" array([2, 3, 2, 4, 3, 2, 2, 2, 2, 4, 4, 4, 4, 4])\n",
" array([1, 7, 5, 7, 7, 7, 7, 7, 5, 1, 1, 1, 1, 1])\n",
" array([2, 6, 2, 1, 2, 6, 2, 6, 2, 2, 6, 1, 1, 1, 1, 1])\n",
" array([4, 3, 3, 5, 3, 3, 5, 3, 5, 3, 4, 4, 4, 4, 4])\n",
" array([3, 6, 3, 5, 3, 3, 3, 3, 6, 6, 5, 5, 5, 5, 5])\n",
" array([6, 2, 7, 6, 6, 6, 2, 7, 7, 7, 7, 7])\n",
" array([4, 4, 1, 7, 4, 4, 4, 4, 1, 1, 7, 7, 7, 7, 7])\n",
" array([4, 2, 3, 2, 2, 3, 2, 3, 2, 2, 4, 4, 4, 4, 4])\n",
" array([1, 7, 5, 7, 1, 1, 1, 1, 1, 7, 7, 7, 7, 5])\n",
" array([2, 6, 2, 1, 2, 2, 2, 2, 6, 1, 1, 1, 1, 1])\n",
" array([5, 3, 3, 4, 3, 5, 3, 5, 5, 3, 3, 4, 4, 4, 4, 4])\n",
" array([2, 3, 3, 5, 2, 3, 2, 6, 6, 3, 2, 6, 3, 3, 3, 6, 5, 5, 5, 5, 5])\n",
" array([6, 2, 7, 2, 2, 6, 6, 7, 7, 7, 7, 7])\n",
" array([4, 1, 4, 7, 4, 4, 4, 4, 1, 7, 7, 7, 7, 7, 4])\n",
" array([4, 4, 4, 4, 4, 4, 7, 7, 7, 7, 7, 7, 1, 1])\n",
" array([2, 6, 2, 2, 2, 6, 2, 6, 2, 6, 1, 1, 1, 1, 1, 1])\n",
" array([4, 4, 4, 4, 4, 4, 4, 5, 2, 5, 5, 5, 5, 5, 2, 2, 2])\n",
" array([6, 3, 3, 6, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5])\n",
" array([7, 5, 7, 7, 7, 7, 7, 5, 1, 1, 1, 1, 1, 1])\n",
" array([2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 4, 4, 4, 4, 4, 4])\n",
" array([6, 6, 6, 6, 2, 2, 4, 4, 4, 4, 4, 4, 7, 7, 7, 7, 7, 7])\n",
" array([4, 4, 4, 4, 4, 4, 1, 1, 1, 7, 7, 7, 7, 7, 7])\n",
" array([6, 2, 2, 6, 2, 2, 6, 2, 2, 1, 1, 1, 1, 1, 1])\n",
" array([5, 3, 4, 5, 5, 3, 3, 3, 5, 5, 5, 4, 4, 4, 4, 4, 4])\n",
" array([6, 3, 3, 3, 6, 3, 3, 3, 6, 5, 5, 5, 5, 5, 5])\n",
" array([7, 5, 7, 5, 7, 5, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1])\n",
" array([2, 3, 2, 2, 2, 3, 2, 2, 4, 4, 4, 4, 4, 4])\n",
" array([6, 2, 6, 6, 2, 2, 7, 7, 7, 7, 7, 7])\n",
" array([1, 4, 4, 4, 4, 4, 4, 1, 7, 7, 7, 7, 7, 7])\n",
" array([2, 6, 2, 2, 6, 2, 2, 6, 2, 1, 1, 1, 1, 1, 1])\n",
" array([5, 3, 3, 3, 3, 3, 3, 5, 3, 5, 4, 4, 4, 4, 4, 4])\n",
" array([6, 3, 3, 3, 6, 3, 3, 3, 5, 5, 5, 5, 5, 5])\n",
" array([7, 5, 7, 7, 5, 7, 7, 5, 7, 1, 1, 1, 1, 1, 1])\n",
" array([2, 3, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4])\n",
" array([6, 2, 2, 6, 2, 2, 7, 7, 7, 7, 7, 7])\n",
" array([1, 4, 4, 1, 4, 4, 4, 1, 4, 7, 7, 7, 7, 7, 7])\n",
" array([2, 6, 2, 2, 2, 2, 6, 2, 6, 1, 1, 1, 1, 1, 1, 1])\n",
" array([5, 3, 3, 3, 5, 3, 3, 3, 5, 4, 4, 4, 4, 4, 4])\n",
" array([6, 3, 3, 3, 6, 3, 3, 3, 6, 5, 5, 5, 5, 5, 5])\n",
" array([7, 5, 7, 7, 7, 7, 5, 7, 5, 1, 1, 1, 1, 1, 1])\n",
" array([2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 4, 4, 4, 4, 4])\n",
" array([6, 7, 2, 7, 2, 2, 6, 6, 6, 7, 6, 7, 7, 7])\n",
" array([1, 4, 4, 4, 4, 1, 1, 1, 4, 4, 7, 7, 7, 7, 7, 7])\n",
" array([2, 6, 2, 2, 2, 6, 2, 2, 1, 1, 1, 1, 1, 1])\n",
" array([3, 5, 3, 3, 3, 3, 5, 4, 4, 4, 4, 4])\n",
" array([3, 6, 3, 6, 3, 3, 6, 3, 3, 5, 5, 5, 5, 5, 5])\n",
" array([7, 5, 7, 7, 5, 7, 5, 7, 7, 5, 1, 1, 1, 1, 1, 1])\n",
" array([2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 4, 4, 4, 4, 4, 4])\n",
" array([6, 2, 6, 6, 2, 2, 7, 7, 7, 7, 7, 7])\n",
" array([2, 3, 2, 4, 2, 3, 2, 2, 2, 4, 4, 4, 4, 4])\n",
" array([7, 6, 2, 6, 2, 2, 2, 6, 2, 7, 7, 7, 7, 7])\n",
" array([4, 4, 1, 7, 4, 4, 4, 4, 1, 7, 7, 7, 7, 7])\n",
" array([1, 7, 5, 7, 5, 7, 1, 1, 1, 1, 1, 5, 7, 7, 7])\n",
" array([4, 3, 3, 5, 3, 4, 4, 4, 3, 3, 3, 5, 5, 4, 4, 4])\n",
" array([6, 3, 3, 5, 2, 3, 2, 3, 3, 3, 5, 5, 5, 5, 5])\n",
" array([2, 2, 6, 1, 1, 1, 1, 1, 1, 2, 6, 2, 6, 2, 2])\n",
" array([2, 2, 3, 4, 2, 2, 3, 2, 2, 4, 4, 4, 4, 4])\n",
" array([2, 6, 7, 6, 2, 6, 2, 7, 7, 7, 7, 7, 7])\n",
" array([4, 1, 4, 4, 4, 7, 4, 1, 4, 1, 4, 4, 1, 7, 7, 7, 7, 7])\n",
" array([1, 7, 5, 7, 7, 7, 5, 5, 7, 7, 1, 1, 1, 1, 1])\n",
" array([3, 4, 5, 3, 3, 5, 4, 4, 4, 4, 4, 3, 3, 3, 5])\n",
" array([3, 3, 6, 5, 3, 3, 6, 3, 6, 3, 5, 5, 5, 5, 5])\n",
" array([1, 2, 2, 6, 2, 2, 6, 2, 2, 6, 1, 1, 1, 1, 1])\n",
" array([2, 3, 2, 4, 2, 3, 2, 2, 3, 2, 4, 4, 4, 4, 4])\n",
" array([2, 6, 7, 2, 2, 6, 6, 7, 7, 7, 7, 7])\n",
" array([4, 4, 7, 1, 4, 1, 4, 4, 1, 1, 4, 7, 7, 7, 7, 7])\n",
" array([1, 7, 7, 5, 7, 5, 7, 7, 7, 1, 1, 1, 1, 1, 5])\n",
" array([3, 3, 5, 4, 3, 3, 3, 5, 3, 5, 4, 4, 4, 4, 4])\n",
" array([5, 6, 3, 3, 3, 6, 3, 3, 3, 6, 5, 5, 5, 5, 5])\n",
" array([2, 1, 2, 6, 2, 6, 2, 6, 2, 2, 1, 1, 1, 1, 1])\n",
" array([2, 4, 2, 3, 2, 2, 2, 3, 2, 3, 4, 4, 4, 4, 4])\n",
" array([2, 6, 7, 2, 2, 6, 2, 7, 7, 7, 7, 7])\n",
" array([4, 4, 1, 1, 7, 4, 1, 4, 1, 4, 4, 7, 7, 7, 7, 7])\n",
" array([7, 7, 5, 1, 7, 5, 7, 7, 7, 1, 1, 1, 1, 1])\n",
" array([3, 5, 3, 4, 3, 5, 3, 3, 3, 5, 3, 4, 4, 4, 4, 4])\n",
" array([3, 3, 6, 5, 3, 6, 3, 6, 3, 3, 5, 5, 5, 5, 5])\n",
" array([2, 2, 6, 1, 2, 2, 2, 2, 1, 2, 2, 6, 1, 1, 1, 1])\n",
" array([2, 4, 2, 3, 2, 3, 2, 3, 2, 2, 4, 4, 4, 4, 4])\n",
" array([2, 6, 7, 2, 6, 6, 6, 7, 7, 7, 7, 7])\n",
" array([4, 4, 1, 7, 4, 4, 1, 4, 1, 4, 7, 7, 7, 7, 7])\n",
" array([1, 7, 7, 5, 7, 5, 7, 5, 7, 5, 7, 1, 1, 1, 1, 1])\n",
" array([4, 5, 3, 3, 3, 5, 3, 3, 5, 3, 5, 4, 4, 4, 4, 4])\n",
" array([5, 6, 3, 3, 3, 6, 6, 3, 3, 6, 3, 5, 5, 5, 5, 5])\n",
" array([2, 1, 2, 6, 2, 2, 6, 2, 2, 6, 1, 1, 1, 1, 1])\n",
" array([1, 2, 3, 1, 2, 2, 2, 3, 2, 3, 2, 4, 4, 4, 4, 4, 4])\n",
" array([6, 2, 2, 2, 6, 6, 7, 7, 7, 7, 7, 7])\n",
" array([1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 4, 4, 4, 4, 4, 4])\n",
" array([3, 3, 3, 3, 3, 3, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4])\n",
" array([5, 2, 2, 6, 3, 3, 3, 3, 6, 6, 3, 3, 5, 5, 5, 5, 5, 5])\n",
" array([2, 6, 2, 2, 2, 2, 2, 6, 1, 1, 1, 1, 1, 1])\n",
" array([7, 5, 7, 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 5, 5])\n",
" array([2, 3, 2, 2, 3, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4])\n",
" array([6, 2, 7, 7, 7, 7, 7, 7, 6, 6, 2, 2])\n",
" array([1, 1, 1, 7, 7, 7, 7, 7, 7, 4, 4, 4, 4, 4, 4])\n",
" array([5, 3, 3, 3, 3, 3, 3, 3, 3, 5, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 5, 5,\n",
" 4])\n",
" array([3, 6, 3, 5, 5, 5, 5, 5, 5, 6, 3, 3, 6, 3, 3])\n",
" array([2, 6, 2, 1, 2, 2, 6, 2, 6, 2])\n",
" array([1, 7, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 5, 5, 5, 5, 5, 5, 5])\n",
" array([2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 4, 4, 4, 4, 4, 4])\n",
" array([6, 2, 2, 2, 6, 6, 7, 7, 7, 7, 7, 7])\n",
" array([1, 7, 1, 7, 7, 7, 7, 7, 4, 4, 4, 4, 4, 4])\n",
" array([3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5])\n",
" array([3, 6, 3, 3, 3, 6, 3, 6, 3, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5])\n",
" array([6, 2, 2, 1, 2, 2, 2, 2, 6, 2, 6, 1, 1, 1, 1, 1])\n",
" array([7, 1, 1, 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 5, 5, 5])\n",
" array([2, 3, 2, 2, 2, 2, 3, 2, 3, 4, 4, 4, 4, 4, 4])\n",
" array([6, 2, 7, 6, 2, 2, 2, 7, 7, 7, 7, 7])\n",
" array([1, 7, 1, 1, 1, 7, 7, 7, 7, 7, 4, 4, 4, 4, 4, 4, 4, 4])\n",
" array([3, 3, 3, 3, 3, 3, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4])\n",
" array([3, 6, 3, 3, 6, 3, 3, 6, 3, 6, 3, 6, 5, 5, 5, 5, 5, 5, 5])\n",
" array([2, 6, 2, 2, 2, 2, 6, 2, 6, 1, 1, 1, 1, 1, 1])\n",
" array([7, 1, 7, 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 5, 5])\n",
" array([2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 2, 4, 4, 4, 4, 4, 4])\n",
" array([3, 3, 6, 2, 2, 2, 6, 6, 6, 7, 7, 7, 7, 7, 7])\n",
" array([1, 7, 7, 7, 7, 7, 7, 1, 1, 4, 4, 4, 4, 4, 4])\n",
" array([3, 3, 3, 3, 3, 3, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4])\n",
" array([3, 6, 3, 3, 3, 3, 3, 6, 5, 5, 5, 5, 5, 5, 5])\n",
" array([2, 6, 2, 2, 6, 2, 2, 2, 2, 6, 1, 1, 1, 1, 1, 1])\n",
" array([7, 7, 1, 7, 7, 7, 7, 1, 1, 1, 1, 1, 5, 5])\n",
" array([5, 3, 6, 3, 5, 3, 5, 3, 5, 6, 3, 5, 3, 6, 5])\n",
" array([2, 1, 2, 6, 1, 2, 1, 2, 6, 1, 2, 6, 2, 2, 2, 6, 6, 6, 2, 6, 1, 2,\n",
" 1])\n",
" array([7, 5, 7, 1, 1, 1, 1, 1, 1, 7, 5, 7, 5, 7, 7, 5])\n",
" array([2, 2, 3, 3, 3, 2, 2, 3, 4, 4, 4, 4, 4, 2, 2])\n",
" array([3, 3, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 5, 5])\n",
" array([1, 4, 7, 5, 5, 7, 4, 1, 4, 4, 1, 4, 4, 7, 7, 7, 7, 7, 7])\n",
" array([2, 2, 6, 7, 7, 7, 7, 7, 7, 6, 6, 6, 2, 2, 6])\n",
" array([2, 3, 6, 2, 6, 5, 5, 5, 5, 5, 5, 6, 3, 3, 6, 3, 6, 6])\n",
" array([2, 6, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 6, 6])\n",
" array([7, 5, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 5, 7, 5, 7, 7])\n",
" array([2, 2, 3, 4, 4, 4, 4, 4, 4, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3])\n",
" array([5, 3, 3, 4, 4, 4, 4, 4, 4, 3, 5, 3, 5, 3, 3])\n",
" array([1, 4, 4, 7, 7, 4, 1, 7, 4, 7, 4, 1, 7, 4, 7])\n",
" array([6, 2, 7, 7, 7, 7, 7, 7, 6, 2, 6, 2])\n",
" array([2, 3, 2, 5, 5, 5, 5, 5, 5, 2, 3, 2, 3, 2, 2])\n",
" array([2, 2, 6, 1, 2, 2, 2, 2, 6, 2, 6, 2, 2, 1, 1, 1, 1, 1])\n",
" array([7, 5, 7, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 5])\n",
" array([2, 3, 4, 2, 4, 4, 4, 4, 4, 2, 3, 2, 2, 2])\n",
" array([3, 5, 3, 4, 4, 4, 4, 4, 4, 3, 5, 3, 5, 3, 5, 3])\n",
" array([4, 1, 4, 7, 7, 7, 7, 7, 7, 4, 4, 1, 4, 1, 1, 1, 4])\n",
" array([6, 2, 7, 7, 7, 7, 7, 7, 2, 2, 6, 6])\n",
" array([6, 3, 3, 3, 5, 3, 5, 5, 5, 5, 5, 3, 6, 3, 3, 3])\n",
" array([6, 2, 2, 1, 1, 1, 1, 1, 1, 2, 6, 2, 2, 2])\n",
" array([7, 5, 7, 1, 7, 7, 1, 1, 1, 1, 1, 7, 7, 7, 5, 7, 5])\n",
" array([2, 3, 2, 4, 4, 4, 4, 4, 4, 2, 3, 2, 2, 2, 2])\n",
" array([5, 3, 3, 4, 4, 4, 4, 4, 4, 3, 5, 3, 5, 3, 5, 3])\n",
" array([4, 1, 4, 7, 7, 7, 7, 7, 7, 4, 1, 1, 4, 4, 4])\n",
" array([6, 2, 7, 7, 7, 7, 7, 7, 2, 6, 6, 2])\n",
" array([6, 3, 3, 5, 5, 5, 5, 5, 5, 3, 3, 3, 3, 6])\n",
" array([6, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 6, 6])\n",
" array([7, 5, 7, 1, 1, 1, 1, 1, 1, 7, 5, 7, 5, 7, 7, 5])\n",
" array([2, 3, 2, 4, 4, 4, 4, 4, 4, 2, 3, 2, 3, 2, 2])\n",
" array([5, 3, 3, 4, 4, 4, 4, 4, 4, 3, 5, 3, 5, 3, 5, 3])\n",
" array([4, 1, 4, 7, 7, 7, 7, 7, 7, 4, 1, 4, 1, 1, 4, 4])\n",
" array([6, 2, 7, 7, 7, 7, 7, 7, 2, 2, 6, 6])]\n",
"y_train\n",
" [5. 3. 6. 1. 0. 4. 2. 5. 3. 6. 1. 0. 4. 2. 5. 3. 6. 1. 0. 4. 2. 5. 3. 6.\n",
" 1. 0. 4. 2. 5. 3. 6. 1. 0. 4. 2. 4. 5. 3. 2. 0. 1. 6. 4. 5. 3. 2. 0. 1.\n",
" 6. 4. 5. 3. 2. 0. 1. 6. 4. 5. 3. 2. 0. 1. 6. 4. 5. 3. 2. 0. 1. 6. 0. 1.\n",
" 2. 3. 4. 5. 6. 0. 1. 2. 3. 4. 5. 6. 0. 1. 2. 3. 4. 5. 6. 0. 1. 2. 3. 4.\n",
" 5. 6. 0. 1. 2. 3. 4. 5. 6. 2. 3. 6. 4. 0. 5. 1. 2. 3. 6. 4. 0. 5. 1. 2.\n",
" 3. 6. 4. 0. 5. 1. 2. 3. 6. 4. 0. 5. 1. 2. 3. 6. 4. 0. 5. 1. 5. 0. 6. 3.\n",
" 4. 1. 2. 5. 0. 6. 3. 4. 1. 2. 5. 0. 6. 3. 4. 1. 2. 5. 0. 6. 3. 4. 1. 2.\n",
" 5. 0. 6. 3. 4. 1. 2. 0. 2. 1. 4. 3. 6. 5. 0. 2. 1. 4. 3. 6. 5. 0. 2. 1.\n",
" 4. 3. 6. 5. 0. 2. 1. 4. 3. 6. 5. 0. 2. 1. 4. 3. 6. 5. 1. 0. 4. 2. 3. 5.\n",
" 6. 1. 0. 4. 2. 3. 5. 6. 1. 0. 4. 2. 3. 5. 6. 1. 0. 4. 2. 3. 5. 6. 1. 0.\n",
" 4. 2. 3. 5. 6. 6. 2. 4. 0. 5. 1. 3. 6. 2. 4. 0. 5. 1. 3. 6. 2. 4. 0. 5.\n",
" 1. 3. 6. 2. 4. 0. 5. 1. 3. 6. 2. 4. 0. 5. 1. 3. 6. 0. 5. 2. 3. 4. 1. 6.\n",
" 0. 5. 2. 3. 4. 1. 6. 0. 5. 2. 3. 4. 1. 6. 0. 5. 2. 3. 4. 1. 6. 0. 5. 2.\n",
" 3. 4. 1. 6. 4. 5. 0. 2. 1. 3. 6. 4. 5. 0. 2. 1. 3. 6. 4. 5. 0. 2. 1. 3.\n",
" 6. 4. 5. 0. 2. 1. 3. 6. 4. 5. 0. 2. 1. 3. 2. 6. 4. 0. 1. 5. 3. 2. 6. 4.\n",
" 0. 1. 5. 3. 2. 6. 4. 0. 1. 5. 3. 2. 6. 4. 0. 1. 5. 3. 2. 6. 4. 0. 1. 5.\n",
" 3. 3. 4. 0. 1. 6. 2. 5. 3. 4. 0. 1. 6. 2. 5. 3. 4. 0. 1. 6. 2. 5. 3. 4.\n",
" 0. 1. 6. 2. 5. 3. 4. 0. 1. 6. 2. 5. 2. 5. 3. 6. 0. 1. 4. 2. 5. 3. 6. 0.\n",
" 1. 4. 2. 5. 3. 6. 0. 1. 4. 2. 5. 3. 6. 0. 1. 4. 2. 5. 3. 6. 0. 1. 4. 2.\n",
" 5. 3. 0. 1. 4. 6. 2. 5. 3. 0. 1. 4. 6. 2. 5. 3. 0. 1. 4. 6. 2. 5. 3. 0.\n",
" 1. 4. 6. 2. 5. 3. 0. 1. 4. 6. 1. 4. 6. 2. 0. 3. 5. 1. 4. 6. 2. 0. 3. 5.\n",
" 1. 4. 6. 2. 0. 3. 5. 1. 4. 6. 2. 0. 3. 5. 1. 4. 6. 2. 0. 3. 5.]\n",
"x_test\n",
" [array([4, 1, 1, 4, 4, 7, 7, 7, 7, 7, 7, 4, 1, 4, 4, 4])\n",
" array([2, 3, 2, 4, 4, 4, 4, 4, 4, 2, 2, 2, 3, 2, 3])\n",
" array([5, 3, 3, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5])\n",
" array([6, 2, 7, 6, 6, 2, 2, 7, 7, 7, 7])\n",
" array([2, 6, 2, 1, 2, 2, 2, 2, 6, 6, 1, 1, 1, 1, 1])\n",
" array([3, 3, 6, 5, 3, 3, 3, 3, 6, 5, 5, 5, 5, 5])\n",
" array([7, 7, 5, 1, 7, 7, 5, 7, 7, 1, 1, 1, 1, 1, 5, 5])\n",
" array([1, 4, 7, 4, 4, 4, 4, 4, 1, 1, 7, 7, 7, 7, 7])\n",
" array([2, 3, 2, 2, 4, 3, 2, 2, 3, 2, 2, 4, 4, 4, 4, 4])\n",
" array([3, 5, 3, 4, 4, 3, 3, 3, 3, 5, 5, 4, 4, 4, 4])\n",
" array([6, 2, 7, 2, 2, 7, 7, 7, 6, 6, 7, 6, 6, 7, 7, 7, 7, 7])\n",
" array([2, 2, 6, 1, 1, 2, 2, 2, 2, 6, 6, 6, 1, 1, 1, 1])\n",
" array([3, 6, 3, 5, 2, 2, 3, 6, 3, 3, 3, 6, 5, 5, 5, 5, 5])\n",
" array([1, 5, 7, 7, 7, 5, 7, 5, 7, 7, 1, 1, 1, 1, 1])\n",
" array([7, 4, 4, 7, 4, 4, 4, 4, 7, 1, 7, 7, 7, 7, 1, 1, 7])\n",
" array([2, 3, 2, 4, 2, 3, 2, 2, 2, 4, 4, 4, 4, 4])\n",
" array([3, 5, 3, 4, 3, 3, 3, 3, 5, 5, 5, 4, 4, 4, 4, 4])\n",
" array([6, 2, 7, 7, 7, 7, 7, 7, 2, 2, 6, 6])\n",
" array([2, 2, 1, 6, 2, 2, 2, 2, 6, 6, 1, 1, 1, 1, 1])\n",
" array([3, 6, 3, 5, 3, 3, 3, 3, 6, 6, 5, 5, 5, 5, 5])\n",
" array([7, 5, 7, 7, 7, 7, 7, 7, 5, 1, 1, 1, 1, 1, 1])\n",
" array([4, 1, 4, 4, 4, 4, 4, 1, 1, 1, 7, 7, 7, 7, 7, 7])\n",
" array([2, 3, 2, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4])\n",
" array([5, 3, 3, 4, 5, 3, 3, 3, 3, 5, 3, 4, 4, 4, 4, 4])\n",
" array([6, 2, 7, 6, 6, 2, 2, 7, 7, 7, 7, 7])\n",
" array([2, 6, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 6, 6])\n",
" array([3, 6, 3, 5, 3, 3, 3, 3, 6, 5, 5, 5, 5, 5])\n",
" array([5, 7, 7, 1, 7, 7, 5, 7, 5, 7, 1, 1, 1, 1, 1])\n",
" array([1, 4, 4, 7, 7, 4, 4, 4, 4, 1, 1, 7, 7, 7, 7])\n",
" array([2, 3, 2, 4, 4, 4, 4, 4, 4, 2, 3, 2, 2, 2])\n",
" array([4, 3, 5, 3, 3, 5, 3, 3, 3, 5, 4, 4, 4, 4, 4])\n",
" array([6, 2, 7, 6, 6, 6, 2, 7, 7, 7, 7, 7])\n",
" array([2, 2, 6, 1, 2, 6, 2, 6, 2, 2, 1, 1, 1, 1, 1])\n",
" array([3, 6, 3, 5, 3, 6, 3, 6, 3, 3, 6, 5, 5, 5, 5, 5])\n",
" array([7, 5, 7, 1, 7, 5, 1, 1, 1, 1, 1, 7, 7, 7, 5])]\n",
"y_test\n",
" [3. 2. 0. 5. 4. 1. 6. 3. 2. 0. 5. 4. 1. 6. 3. 2. 0. 5. 4. 1. 6. 3. 2. 0.\n",
" 5. 4. 1. 6. 3. 2. 0. 5. 4. 1. 6.]\n",
"> \u001b[0;32m/tmp/ipykernel_97850/1264473745.py\u001b[0m(32)\u001b[0;36mcreateTrainTest\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32m 30 \u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'y_test\\n'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0my_test\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0m\u001b[0;32m 31 \u001b[0;31m \u001b[0mpdb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_trace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0m\u001b[0;32m---> 32 \u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mshapes\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0m\u001b[0;32m 33 \u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx_train\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0m\u001b[0;32m 34 \u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_train\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0m\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"ipdb> x_train.shape\n",
"(525,)\n",
"ipdb> x_test.shape\n",
"(35,)\n"
]
}
],
"source": [
"accuracies_full = dict()\n",
"accuracies_small = dict()\n",
"accuracies_last = dict()\n",
"\n",
"for current_PID in sorted(data.PID.unique()):\n",
" accuracies_full[current_PID], pred_label, test_label = runSVMS(createTrainTest([current_PID], Task_IDs, StartIndexOffset, EndIndexOffset, shapes=True))\n",
" # Only the first 5\n",
" accuracies_small[current_PID], pred_label, test_label = runSVMS(createTrainTest([current_PID], Task_IDs, StartIndexOffset, EndIndexOffset, shapes=True), 5)\n",
" # Only the last 5\n",
" accuracies_last[current_PID], pred_label, test_label = runSVMS(createTrainTest([current_PID], Task_IDs, StartIndexOffset, EndIndexOffset, shapes=True), 5, last_elements=True)\n",
" #pdb.set_trace()\n",
"print(accuracies_full)\n",
"print(accuracies_small)\n",
"print(accuracies_last)\n",
"print(\"mean full\", np.array(list(accuracies_full.values())).mean())\n",
"print(\"mean small\", np.array(list(accuracies_small.values())).mean())\n",
"print(\"mean last\", np.array(list(accuracies_last.values())).mean())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fdd4c915",
"metadata": {},
"outputs": [],
"source": [
"len(g.groups.keys())\n",
"g.groups.keys()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View file

@ -0,0 +1,687 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "3aed8aec",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2021-09-27 15:31:30.518074: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.10.1\n"
]
}
],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import datetime\n",
"import time,pdb\n",
"import json\n",
"import random\n",
"import statistics\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import tensorflow as tf\n",
"from tensorflow import keras\n",
"from sklearn import svm\n",
"from sklearn.model_selection import GridSearchCV \n",
"from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn.metrics import accuracy_score\n",
"from tensorflow.keras.layers import *\n",
"from sklearn.model_selection import train_test_split\n",
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras.optimizers import *\n",
"from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, Callback\n",
"from tensorflow.keras.preprocessing.sequence import pad_sequences\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.metrics import mean_squared_error\n",
"from sklearn.metrics import accuracy_score\n",
"import tqdm\n",
"from multiprocessing import Pool\n",
"import os\n",
"from tensorflow.compat.v1.keras.layers import Bidirectional, CuDNNLSTM"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "817f7108",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"available PIDs [ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.]\n",
"available TaskIDs [0. 1. 2. 3. 4. 5. 6.]\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Timestamp</th>\n",
" <th>Event</th>\n",
" <th>TaskID</th>\n",
" <th>Part</th>\n",
" <th>PID</th>\n",
" <th>TextRule</th>\n",
" <th>Rule</th>\n",
" <th>Type</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1.575388e+12</td>\n",
" <td>4</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>{'Title': ['1', 'Indent', 'and', 'Italic'], 'S...</td>\n",
" <td>3.0</td>\n",
" <td>Cmd</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1.575388e+12</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>{'Title': ['1', 'Indent', 'and', 'Italic'], 'S...</td>\n",
" <td>3.0</td>\n",
" <td>Toolbar</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1.575388e+12</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>{'Title': ['1', 'Indent', 'and', 'Italic'], 'S...</td>\n",
" <td>3.0</td>\n",
" <td>Cmd</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1.575388e+12</td>\n",
" <td>4</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>{'Title': ['1', 'Indent', 'and', 'Italic'], 'S...</td>\n",
" <td>3.0</td>\n",
" <td>Cmd</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1.575388e+12</td>\n",
" <td>4</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>{'Title': ['1', 'Indent', 'and', 'Italic'], 'S...</td>\n",
" <td>3.0</td>\n",
" <td>Cmd</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8376</th>\n",
" <td>1.603898e+12</td>\n",
" <td>7</td>\n",
" <td>6.0</td>\n",
" <td>5.0</td>\n",
" <td>16.0</td>\n",
" <td>{'Title': ['Size', 'Big'], 'Subtitle': ['Bold'...</td>\n",
" <td>5.0</td>\n",
" <td>Toolbar</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8377</th>\n",
" <td>1.603898e+12</td>\n",
" <td>2</td>\n",
" <td>6.0</td>\n",
" <td>5.0</td>\n",
" <td>16.0</td>\n",
" <td>{'Title': ['Size', 'Big'], 'Subtitle': ['Bold'...</td>\n",
" <td>5.0</td>\n",
" <td>Cmd</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8378</th>\n",
" <td>1.603898e+12</td>\n",
" <td>2</td>\n",
" <td>6.0</td>\n",
" <td>5.0</td>\n",
" <td>16.0</td>\n",
" <td>{'Title': ['Size', 'Big'], 'Subtitle': ['Bold'...</td>\n",
" <td>5.0</td>\n",
" <td>Cmd</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8379</th>\n",
" <td>1.603898e+12</td>\n",
" <td>6</td>\n",
" <td>6.0</td>\n",
" <td>5.0</td>\n",
" <td>16.0</td>\n",
" <td>{'Title': ['Size', 'Big'], 'Subtitle': ['Bold'...</td>\n",
" <td>5.0</td>\n",
" <td>Toolbar</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8380</th>\n",
" <td>1.603898e+12</td>\n",
" <td>6</td>\n",
" <td>6.0</td>\n",
" <td>5.0</td>\n",
" <td>16.0</td>\n",
" <td>{'Title': ['Size', 'Big'], 'Subtitle': ['Bold'...</td>\n",
" <td>5.0</td>\n",
" <td>Toolbar</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>8381 rows × 8 columns</p>\n",
"</div>"
],
"text/plain": [
" Timestamp Event TaskID Part PID \\\n",
"0 1.575388e+12 4 0.0 1.0 1.0 \n",
"1 1.575388e+12 1 0.0 1.0 1.0 \n",
"2 1.575388e+12 1 0.0 1.0 1.0 \n",
"3 1.575388e+12 4 0.0 1.0 1.0 \n",
"4 1.575388e+12 4 0.0 1.0 1.0 \n",
"... ... ... ... ... ... \n",
"8376 1.603898e+12 7 6.0 5.0 16.0 \n",
"8377 1.603898e+12 2 6.0 5.0 16.0 \n",
"8378 1.603898e+12 2 6.0 5.0 16.0 \n",
"8379 1.603898e+12 6 6.0 5.0 16.0 \n",
"8380 1.603898e+12 6 6.0 5.0 16.0 \n",
"\n",
" TextRule Rule Type \n",
"0 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Cmd \n",
"1 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Toolbar \n",
"2 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Cmd \n",
"3 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Cmd \n",
"4 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Cmd \n",
"... ... ... ... \n",
"8376 {'Title': ['Size', 'Big'], 'Subtitle': ['Bold'... 5.0 Toolbar \n",
"8377 {'Title': ['Size', 'Big'], 'Subtitle': ['Bold'... 5.0 Cmd \n",
"8378 {'Title': ['Size', 'Big'], 'Subtitle': ['Bold'... 5.0 Cmd \n",
"8379 {'Title': ['Size', 'Big'], 'Subtitle': ['Bold'... 5.0 Toolbar \n",
"8380 {'Title': ['Size', 'Big'], 'Subtitle': ['Bold'... 5.0 Toolbar \n",
"\n",
"[8381 rows x 8 columns]"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"study_data_path = \"../IntentData/\"\n",
"data = pd.read_pickle(study_data_path + \"/Preprocessing_data/clean_data.pkl\")\n",
"#val_data = pd.read_pickle(study_data_path + \"/Preprocessing_data/clean_data_condition2.pkl\")\n",
"\n",
"print(\"available PIDs\", data.PID.unique())\n",
"\n",
"print(\"available TaskIDs\", data.TaskID.unique())\n",
"\n",
"data.Event.unique()\n",
"data"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ab778228",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"count 560.000000\n",
"mean 14.966071\n",
"std 2.195440\n",
"min 8.000000\n",
"25% 14.000000\n",
"50% 15.000000\n",
"75% 16.000000\n",
"max 28.000000\n",
"Name: Event, dtype: float64"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.groupby([\"PID\", \"Part\", \"TaskID\"])[\"Event\"].count().describe()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "32550f71",
"metadata": {},
"outputs": [],
"source": [
"\n",
"Task_IDs = list(range(0,7))\n",
"\n",
"# grouping by part is needed to have one ruleset for the whole part\n",
"g = data.groupby([\"PID\", \"Part\", \"TaskID\"])\n",
"df_all = []"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "f6fecc2f",
"metadata": {},
"outputs": [],
"source": [
"def createTrainTestalaSven(test_IDs, task_IDs, window_size, stride, shapes=False, val_IDs=None):\n",
" if not isinstance(test_IDs, list):\n",
" raise ValueError(\"Test_IDs are not a list\")\n",
" if not isinstance(task_IDs, list):\n",
" raise ValueError(\"Task_IDs are not a list\")\n",
" # Fill data arrays\n",
" all_elem = []\n",
" for current in g.groups.keys():\n",
" c = g.get_group(current)\n",
" if (c.TaskID.isin(task_IDs).all()):\n",
" \n",
" new_data = c.Event.values\n",
" stepper = 0\n",
" while stepper <= (len(new_data)-window_size-1):\n",
" tmp = new_data[stepper:stepper + window_size]\n",
" x = tmp[:-1]\n",
" y = tmp[-1]\n",
" stepper += stride\n",
" \n",
" if (c.PID.isin(test_IDs).all()):\n",
" all_elem.append([\"Test\", x, y])\n",
" elif (c.PID.isin(val_IDs).all()):\n",
" all_elem.append([\"Val\", x, y])\n",
" else:\n",
" all_elem.append([\"Train\", x, y])\n",
" df_tmp = pd.DataFrame(all_elem, columns =[\"Split\", \"X\", \"Y\"])\n",
" turbo = []\n",
" for s in df_tmp.Split.unique():\n",
" dfX = df_tmp[df_tmp.Split == s]\n",
" max_amount = dfX.groupby([\"Y\"]).count().max().X\n",
" for y in dfX.Y.unique():\n",
" df_turbotmp = dfX[dfX.Y == y]\n",
" turbo.append(df_turbotmp)\n",
" turbo.append(df_turbotmp.sample(max_amount-len(df_turbotmp), replace=True))\n",
" # if len(df_turbotmp) < max_amount:\n",
"\n",
" df_tmp = pd.concat(turbo)\n",
" x_train, y_train = df_tmp[df_tmp.Split == \"Train\"].X.values, df_tmp[df_tmp.Split == \"Train\"].Y.values\n",
" x_test, y_test = df_tmp[df_tmp.Split == \"Test\"].X.values, df_tmp[df_tmp.Split == \"Test\"].Y.values\n",
" x_val, y_val = df_tmp[df_tmp.Split == \"Val\"].X.values, df_tmp[df_tmp.Split == \"Val\"].Y.values\n",
" \n",
" x_train = np.expand_dims(np.stack(x_train), axis=2)\n",
" y_train = np.array(y_train)\n",
" x_test = np.expand_dims(np.stack(x_test), axis=2)\n",
" y_test = np.array(y_test)\n",
" if len(x_val) > 0:\n",
" x_val = np.expand_dims(np.stack(x_val), axis=2)\n",
" y_val = np.array(y_val)\n",
" return(x_train, y_train, x_test, y_test, x_val, y_val)\n",
" return(x_train, y_train, x_test, y_test)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "b8f92bc1",
"metadata": {},
"outputs": [],
"source": [
"def createTrainTest(test_IDs, task_IDs, window_size, stride, shapes=False, val_IDs=None):\n",
" if not isinstance(test_IDs, list):\n",
" raise ValueError(\"Test_IDs are not a list\")\n",
" if not isinstance(task_IDs, list):\n",
" raise ValueError(\"Task_IDs are not a list\")\n",
" # Fill data arrays\n",
" y_train = []\n",
" x_train = []\n",
" y_test = []\n",
" x_test = []\n",
" x_val = []\n",
" y_val = []\n",
" \n",
" for current in g.groups.keys():\n",
" c = g.get_group(current)\n",
" if (c.TaskID.isin(task_IDs).all()):\n",
" \n",
" new_data = c.Event.values\n",
" stepper = 0\n",
" while stepper <= (len(new_data)-window_size-1):\n",
" tmp = new_data[stepper:stepper + window_size]\n",
" pdb.set_trace()\n",
" x = tmp[:-1]\n",
" y = tmp[-1]\n",
" stepper += stride\n",
" if (c.PID.isin(test_IDs).all()):\n",
" if y == 6:\n",
" y_test.append(y)\n",
" x_test.append(x)\n",
" y_test.append(y)\n",
" x_test.append(x)\n",
" elif (c.PID.isin(val_IDs).all()):\n",
" if y == 6:\n",
" y_val.append(y)\n",
" x_val.append(x)\n",
" y_val.append(y)\n",
" x_val.append(x)\n",
" else:\n",
" if y == 6:\n",
" y_train.append(y)\n",
" x_train.append(x)\n",
" y_train.append(y)\n",
" x_train.append(x)\n",
" x_train = np.array(x_train)\n",
" y_train = np.array(y_train)\n",
" x_test = np.array(x_test)\n",
" y_test = np.array(y_test)\n",
" x_val = np.array(x_val)\n",
" y_val = np.array(y_val)\n",
" pdb.set_trace()\n",
" if (shapes):\n",
" print(x_train.shape)\n",
" print(y_train.shape)\n",
" print(x_test.shape)\n",
" print(y_test.shape)\n",
" print(x_val.shape)\n",
" print(y_val.shape)\n",
" print(np.unique(y_test))\n",
" print(np.unique(y_train))\n",
" if len(x_val) > 0:\n",
" return(x_train, y_train, x_test, y_test, x_val, y_val)\n",
" return (x_train, y_train, x_test, y_test)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "e56fbc58",
"metadata": {},
"outputs": [],
"source": [
"maxlen = 1000\n",
"lens = []\n",
"for current in g.groups.keys():\n",
" c = g.get_group(current)\n",
" lens.append(len(c.Event.values))\n",
" maxlen = min(maxlen, len(c.Event.values))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "c02cbdae",
"metadata": {},
"outputs": [],
"source": [
"# Number of trees in random forest\n",
"n_estimators = np.arange(5,100, 5)\n",
"# Number of features to consider at every split\n",
"max_features = ['sqrt']\n",
"# Maximum number of levels in tree\n",
"max_depth = np.arange(5,100, 5)\n",
"# Minimum number of samples required to split a node\n",
"min_samples_split = np.arange(2,10, 1)\n",
"# Minimum number of samples required at each leaf node\n",
"min_samples_leaf = np.arange(2,5, 1)\n",
"# Method of selecting samples for training each tree\n",
"bootstrap = [True, False]\n",
"\n",
"# Create the random grid\n",
"param_grid = {'n_estimators': n_estimators,\n",
" 'max_features': max_features,\n",
" 'max_depth': max_depth,\n",
" 'min_samples_split': min_samples_split,\n",
" 'min_samples_leaf': min_samples_leaf,\n",
" 'bootstrap': bootstrap}\n",
"\n",
"grid = GridSearchCV(RandomForestClassifier(), param_grid, refit = True, verbose = 0, return_train_score=True) "
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "c2bcfe7f",
"metadata": {},
"outputs": [],
"source": [
"def doTrainSlideWindowNoPad(currentPid):\n",
" print(f\"doTrain: {currentPid}\")\n",
" dfs = []\n",
" for window_size in range(8, 15): \n",
" (x_train, y_train, x_test, y_test) = createTrainTest([currentPid], Task_IDs, window_size, 1, False, [200])\n",
" print(f\"doTrain: created TrainTestsplit\")\n",
"\n",
" # print(\"window_size\", 5, \"PID\", currentPid, \"samples\", x_train.shape[0], \"generated_samples\", \"samples\", x_train_window.shape[0])\n",
"\n",
" grid.fit(x_train, y_train)\n",
" print(\"fitted\")\n",
" # y_pred = grid.predict(x_test)\n",
"\n",
" df_params = pd.DataFrame(grid.cv_results_[\"params\"])\n",
" df_params[\"Mean_test\"] = grid.cv_results_[\"mean_test_score\"]\n",
" df_params[\"Mean_train\"] = grid.cv_results_[\"mean_train_score\"]\n",
" df_params[\"STD_test\"] = grid.cv_results_[\"std_test_score\"]\n",
" df_params[\"STD_train\"] = grid.cv_results_[\"std_train_score\"]\n",
" df_params['Window_Size'] = window_size\n",
" df_params['PID'] = currentPid\n",
" # df_params[\"Accuracy\"] = accuracy_score(y_pred, y_test)\n",
" dfs.append(df_params)\n",
"\n",
" return pd.concat(dfs)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "9e3d86f1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"doTrain: 1\n",
"> \u001b[0;32m/tmp/ipykernel_90176/2602038955.py\u001b[0m(23)\u001b[0;36mcreateTrainTest\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32m 21 \u001b[0;31m \u001b[0mtmp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstepper\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mstepper\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mwindow_size\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0m\u001b[0;32m 22 \u001b[0;31m \u001b[0mpdb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_trace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0m\u001b[0;32m---> 23 \u001b[0;31m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtmp\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0m\u001b[0;32m 24 \u001b[0;31m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtmp\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0m\u001b[0;32m 25 \u001b[0;31m \u001b[0mstepper\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mstride\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0m\n",
"ipdb> tmp\n",
"array([4, 1, 1, 4, 4, 7, 7, 7])\n",
"ipdb> new_data\n",
"array([4, 1, 1, 4, 4, 7, 7, 7, 7, 7, 7, 4, 1, 4, 4, 4])\n",
"ipdb> current\n",
"(1.0, 1.0, 0.0)\n",
"ipdb> print(c)\n",
" Timestamp Event TaskID Part PID \\\n",
"0 1.575388e+12 4 0.0 1.0 1.0 \n",
"1 1.575388e+12 1 0.0 1.0 1.0 \n",
"2 1.575388e+12 1 0.0 1.0 1.0 \n",
"3 1.575388e+12 4 0.0 1.0 1.0 \n",
"4 1.575388e+12 4 0.0 1.0 1.0 \n",
"5 1.575388e+12 7 0.0 1.0 1.0 \n",
"6 1.575388e+12 7 0.0 1.0 1.0 \n",
"7 1.575388e+12 7 0.0 1.0 1.0 \n",
"8 1.575388e+12 7 0.0 1.0 1.0 \n",
"9 1.575388e+12 7 0.0 1.0 1.0 \n",
"10 1.575388e+12 7 0.0 1.0 1.0 \n",
"11 1.575388e+12 4 0.0 1.0 1.0 \n",
"12 1.575388e+12 1 0.0 1.0 1.0 \n",
"13 1.575388e+12 4 0.0 1.0 1.0 \n",
"14 1.575388e+12 4 0.0 1.0 1.0 \n",
"15 1.575388e+12 4 0.0 1.0 1.0 \n",
"\n",
" TextRule Rule Type \n",
"0 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Cmd \n",
"1 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Toolbar \n",
"2 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Cmd \n",
"3 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Cmd \n",
"4 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Cmd \n",
"5 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Toolbar \n",
"6 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Toolbar \n",
"7 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Toolbar \n",
"8 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Toolbar \n",
"9 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Toolbar \n",
"10 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Toolbar \n",
"11 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Cmd \n",
"12 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Toolbar \n",
"13 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Cmd \n",
"14 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Cmd \n",
"15 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S... 3.0 Cmd \n",
"ipdb> print(c.TextRule)\n",
"0 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S...\n",
"1 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S...\n",
"2 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S...\n",
"3 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S...\n",
"4 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S...\n",
"5 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S...\n",
"6 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S...\n",
"7 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S...\n",
"8 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S...\n",
"9 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S...\n",
"10 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S...\n",
"11 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S...\n",
"12 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S...\n",
"13 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S...\n",
"14 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S...\n",
"15 {'Title': ['1', 'Indent', 'and', 'Italic'], 'S...\n",
"Name: TextRule, dtype: object\n",
"ipdb> print(c.Event)\n",
"0 4\n",
"1 1\n",
"2 1\n",
"3 4\n",
"4 4\n",
"5 7\n",
"6 7\n",
"7 7\n",
"8 7\n",
"9 7\n",
"10 7\n",
"11 4\n",
"12 1\n",
"13 4\n",
"14 4\n",
"15 4\n",
"Name: Event, dtype: int64\n",
"ipdb> val\n",
"*** NameError: name 'val' is not defined\n",
"ipdb> val_IDs\n",
"[200]\n",
"--KeyboardInterrupt--\n",
"\n",
"KeyboardInterrupt: Interrupted by user\n",
"> \u001b[0;32m/tmp/ipykernel_90176/2602038955.py\u001b[0m(22)\u001b[0;36mcreateTrainTest\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32m 20 \u001b[0;31m \u001b[0;32mwhile\u001b[0m \u001b[0mstepper\u001b[0m \u001b[0;34m<=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mwindow_size\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0m\u001b[0;32m 21 \u001b[0;31m \u001b[0mtmp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstepper\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mstepper\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mwindow_size\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0m\u001b[0;32m---> 22 \u001b[0;31m \u001b[0mpdb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_trace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0m\u001b[0;32m 23 \u001b[0;31m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtmp\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0m\u001b[0;32m 24 \u001b[0;31m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtmp\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0m\n",
"--KeyboardInterrupt--\n",
"\n",
"KeyboardInterrupt: Interrupted by user\n",
"> \u001b[0;32m/tmp/ipykernel_90176/2602038955.py\u001b[0m(23)\u001b[0;36mcreateTrainTest\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32m 21 \u001b[0;31m \u001b[0mtmp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstepper\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mstepper\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mwindow_size\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0m\u001b[0;32m 22 \u001b[0;31m \u001b[0mpdb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_trace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0m\u001b[0;32m---> 23 \u001b[0;31m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtmp\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0m\u001b[0;32m 24 \u001b[0;31m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtmp\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0m\u001b[0;32m 25 \u001b[0;31m \u001b[0mstepper\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mstride\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0m\n",
"ipdb> q\n"
]
},
{
"ename": "BdbQuit",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mBdbQuit\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m/tmp/ipykernel_90176/1128965594.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdoTrainSlideWindowNoPad\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m/tmp/ipykernel_90176/2629087375.py\u001b[0m in \u001b[0;36mdoTrainSlideWindowNoPad\u001b[0;34m(currentPid)\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mdfs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mwindow_size\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m15\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0;34m(\u001b[0m\u001b[0mx_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_test\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcreateTrainTest\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcurrentPid\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTask_IDs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwindow_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m200\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"doTrain: created TrainTestsplit\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/tmp/ipykernel_90176/2602038955.py\u001b[0m in \u001b[0;36mcreateTrainTest\u001b[0;34m(test_IDs, task_IDs, window_size, stride, shapes, val_IDs)\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0mtmp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstepper\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mstepper\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mwindow_size\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0mpdb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_trace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtmp\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 24\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtmp\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[0mstepper\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mstride\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/tmp/ipykernel_90176/2602038955.py\u001b[0m in \u001b[0;36mcreateTrainTest\u001b[0;34m(test_IDs, task_IDs, window_size, stride, shapes, val_IDs)\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0mtmp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstepper\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mstepper\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mwindow_size\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0mpdb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_trace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtmp\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 24\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtmp\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[0mstepper\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mstride\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/miniconda3/envs/intentPrediction/lib/python3.9/bdb.py\u001b[0m in \u001b[0;36mtrace_dispatch\u001b[0;34m(self, frame, event, arg)\u001b[0m\n\u001b[1;32m 86\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;31m# None\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 87\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mevent\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'line'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 88\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdispatch_line\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mframe\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 89\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mevent\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'call'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 90\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdispatch_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mframe\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0marg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/miniconda3/envs/intentPrediction/lib/python3.9/bdb.py\u001b[0m in \u001b[0;36mdispatch_line\u001b[0;34m(self, frame)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstop_here\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mframe\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbreak_here\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mframe\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muser_line\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mframe\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 113\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mquitting\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mBdbQuit\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 114\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrace_dispatch\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mBdbQuit\u001b[0m: "
]
}
],
"source": [
"doTrainSlideWindowNoPad(1)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View file

@ -0,0 +1,167 @@
import torch
import torch.nn as nn
class fc_block(nn.Module):
def __init__(self, in_channels, out_channels, norm, activation_fn):
super(fc_block, self).__init__()
block = nn.Sequential()
block.add_module('linear', nn.Linear(in_channels, out_channels))
if norm:
block.add_module('batchnorm', nn.BatchNorm1d(out_channels))
if activation_fn is not None:
block.add_module('activation', activation_fn())
self.block = block
def forward(self, x):
return self.block(x)
class ActionDemoEncoder(nn.Module):
def __init__(self, args, pooling):
super(ActionDemoEncoder, self).__init__()
hidden_size = args.demo_hidden
self.hidden_size = hidden_size
self.bs = args.batch_size
len_action_predicates = 35 # max_action_len
self.action_embed = nn.Embedding(len_action_predicates, hidden_size)
feat2hidden = nn.Sequential()
feat2hidden.add_module(
'fc_block1', fc_block(hidden_size, hidden_size, False, nn.ReLU))
self.feat2hidden = feat2hidden
self.pooling = pooling
if 'lstm' in self.pooling:
self.lstm = nn.LSTM(hidden_size, hidden_size)
def forward(self, batch_data):
batch_data = batch_data.view(-1,1)
stacked_demo_feat = self.action_embed(batch_data)
stacked_demo_feat = self.feat2hidden(stacked_demo_feat)
batch_demo_feat = []
start = 0
for length in range(0,batch_data.shape[0]):
if length == 0:
feat = stacked_demo_feat[0:1, :]
else:
feat = stacked_demo_feat[(length-1):length, :]
if len(feat.size()) == 3:
feat = feat.unsqueeze(0)
if self.pooling == 'max':
feat = torch.max(feat, 0)[0]
elif self.pooling == 'avg':
feat = torch.mean(feat, 0)
elif self.pooling == 'lstmavg':
lstm_out, hidden = self.lstm(feat.view(len(feat), 1, -1))
lstm_out = lstm_out.view(len(feat), -1)
feat = torch.mean(lstm_out, 0)
elif self.pooling == 'lstmlast':
lstm_out, hidden = self.lstm(feat.view(len(feat), 1, -1))
lstm_out = lstm_out.view(len(feat), -1)
feat = lstm_out[-1]
else:
raise ValueError
batch_demo_feat.append(feat)
demo_emb = torch.stack(batch_demo_feat, 0)
demo_emb = demo_emb.view(self.bs, 35, -1)
return demo_emb
class PredicateClassifier(nn.Module):
def __init__(self, args,):
super(PredicateClassifier, self).__init__()
hidden_size = args.demo_hidden
self.hidden_size = hidden_size
classifier = nn.Sequential()
classifier.add_module('fc_block1', fc_block(hidden_size*35, hidden_size, False, nn.Tanh))
classifier.add_module('dropout', nn.Dropout(args.dropout))
classifier.add_module('fc_block2', fc_block(hidden_size, 7, False, None)) # 7 is all possible actions
self.classifier = classifier
def forward(self, input_emb):
input_emb = input_emb.view(-1, self.hidden_size*35)
return self.classifier(input_emb)
class ActionDemo2Predicate(nn.Module):
def __init__(self, args, **kwargs):
super(ActionDemo2Predicate, self).__init__()
print('------------------------------------------------------------------------------------------')
print('ActionDemo2Predicate')
print('------------------------------------------------------------------------------------------')
model_type = args.model_type
print('model_type', model_type)
if model_type.lower() == 'max':
demo_encoder = ActionDemoEncoder(args, 'max')
elif model_type.lower() == 'avg':
demo_encoder = ActionDemoEncoder(args, 'avg')
elif model_type.lower() == 'lstmavg':
demo_encoder = ActionDemoEncoder(args, 'lstmavg')
elif model_type.lower() == 'bilstmavg':
demo_encoder = ActionDemoEncoder(args, 'bilstmavg')
elif model_type.lower() == 'lstmlast':
demo_encoder = ActionDemoEncoder(args, 'lstmlast')
elif model_type.lower() == 'bilstmlast':
demo_encoder = ActionDemoEncoder(args, 'bilstmlast')
else:
raise ValueError
demo_encoder = torch.nn.DataParallel(demo_encoder)
predicate_decoder = PredicateClassifier(args)
# for quick save and load
all_modules = nn.Sequential()
all_modules.add_module('demo_encoder', demo_encoder)
all_modules.add_module('predicate_decoder', predicate_decoder)
self.demo_encoder = demo_encoder
self.predicate_decoder = predicate_decoder
self.all_modules = all_modules
self.to_cuda_fn = None
def set_to_cuda_fn(self, to_cuda_fn):
self.to_cuda_fn = to_cuda_fn
def forward(self, data, **kwargs):
'''
Note: The order of the `data` won't change in this function
'''
if self.to_cuda_fn:
data = self.to_cuda_fn(data)
batch_demo_emb = self.demo_encoder(data)
pred = self.predicate_decoder(batch_demo_emb)
return pred
def write_summary(self, writer, info, postfix):
model_name = 'Demo2Predicate-{}/'.format(postfix)
for k in self.summary_keys:
if k in info.keys():
writer.scalar_summary(model_name + k, info[k])
def save(self, path, verbose=False):
if verbose:
print(colored('[*] Save model at {}'.format(path), 'magenta'))
torch.save(self.all_modules.state_dict(), path)
def load(self, path, verbose=False):
if verbose:
print(colored('[*] Load model at {}'.format(path), 'magenta'))
self.all_modules.load_state_dict(
torch.load(
path,
map_location=lambda storage,
loc: storage))

View file

@ -0,0 +1,207 @@
import pickle
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pathlib import Path
import argparse
def view_clean_data():
with open('dataset/clean_data.pkl', 'rb') as f:
data = pickle.load(f)
print(type(data), len(data))
print(data.keys())
print('length of data:',len(data))
print('event', data['Event'], 'length of event', len(data['Event']))
print('rule', data['Rule'], 'length of event', len(data['Rule']))
print('rule unique', data.Rule.unique())
print('task id unique', data.TaskID.unique())
print('pid unique', data.PID.unique())
print('event unique', data.Event.unique())
def split_org_data():
# generate train, test data by split user, aggregate action sequence for next action prediction
# orignial action seq: a = [a_0 ... a_n]
# new action seq: for a: a0 = [a_0], a1 = [a_0, a_1] ...
# split original data into train and test based on user
with open('dataset/clean_data.pkl', 'rb') as f:
data = pickle.load(f)
print('original data keys', data.keys())
print('len of original data', len(data))
print('rule unique', data.Rule.unique())
print('event unique', data.Event.unique())
data_train = data[data['PID']<=11]
data_test = data[data['PID']>11]
print('train set len', len(data_train))
print('test set len', len(data_test))
# split data by task
train_data_intent = []
test_data_intent = []
for i in range(7):
# 7 different rules, each as an intention
train_data_intent.append(data_train[data_train['Rule']==i])
test_data_intent.append(data_test[data_test['Rule']==i])
# generate train set
max_len = 0 # max len is 35
for i in range(7): # 7 tasks/rules
train_data = [] # [task]
train_label = []
for u in range(1,12):
user_data = train_data_intent[i][train_data_intent[i]['PID']==u]
for j in range(1,6): # 5 parts == 5 trials
part_data = user_data[user_data['Part']==j]
for l in range(1,len(part_data['Event'])-1):
print(part_data['Event'][:l].tolist())
train_data.append(part_data['Event'][:l].tolist())
train_label.append(part_data['Event'].iat[l+1])
if len(part_data['Event'])>max_len:
max_len = len(part_data['Event'])
for k in range(len(train_data)):
while len(train_data[k])<35:
train_data[k].append(0) # padding with 0
print('x_len', len(train_data), type(train_data[0]), len(train_data[0]))
print('y_len', len(train_label), type(train_label[0]))
Path("dataset/strategy_dataset").mkdir(parents=True, exist_ok=True)
with open('dataset/strategy_dataset/train_label_'+str(i)+'.pkl', 'wb') as f:
pickle.dump(train_label, f)
with open('dataset/strategy_dataset/train_data_'+str(i)+'.pkl', 'wb') as f:
pickle.dump(train_data, f)
print('max_len', max_len)
# generate test set
max_len = 0 # max len is 33, total max is 35
for i in range(7): # 7 tasks/rules
test_data = [] # [task][user]
test_label = []
test_action_id = []
for u in range(12,17):
user_data = test_data_intent[i][test_data_intent[i]['PID']==u]
test_data_user = []
test_label_user = []
test_action_id_user = []
for j in range(1,6): # 5 parts == 5 trials
part_data = user_data[user_data['Part']==j]
for l in range(1,len(part_data['Event'])-1):
test_data_user.append(part_data['Event'][:l].tolist())
test_label_user.append(part_data['Event'].iat[l+1])
test_action_id_user.append(part_data['Part'].iat[l])
if len(part_data['Event'])>max_len:
max_len = len(part_data['Event'])
for k in range(len(test_data_user)):
while len(test_data_user[k])<35:
test_data_user[k].append(0) # padding with 0
test_data.append(test_data_user)
test_label.append(test_label_user)
test_action_id.append(test_action_id_user)
print('x_len', len(test_data), type(test_data[0]), len(test_data[0]))
print('y_len', len(test_label), type(test_label[0]))
with open('dataset/strategy_dataset/test_label_'+str(i)+'.pkl', 'wb') as f:
pickle.dump(test_label, f)
with open('dataset/strategy_dataset/test_data_'+str(i)+'.pkl', 'wb') as f:
pickle.dump(test_data, f)
with open('dataset/strategy_dataset/test_action_id_'+str(i)+'.pkl', 'wb') as f:
pickle.dump(test_action_id, f)
print('max_len', max_len)
def calc_gt_prob():
# train set unique label
for i in range(7):
with open('dataset/strategy_dataset/train_label_'+str(i)+'.pkl', 'rb') as f:
y = pickle.load(f)
y = np.array(y)
print('task ', i)
print('unique train label', np.unique(y))
def plot_gt_dist():
full_data = []
for i in range(7):
with open('dataset/strategy_dataset/' + 'test' + '_label_' + str(i) + '.pkl', 'rb') as f:
data = pickle.load(f)
#print(len(data))
full_data.append(data)
fig, axs = plt.subplots(7)
fig.set_figheight(10)
fig.set_figwidth(16)
act_name = ["Italic", "Bold", "Underline", "Indent", "Align", "FontSize", "FontFamily"]
x = np.arange(7)
width = 0.1
for i in range(7):
for u in range(len(data)): # 5 users
values, counts = np.unique(full_data[i][u], return_counts=True)
counts_vis = [0]*7
for j in range(len(values)):
counts_vis[values[j]-1] = counts[j]
print('task', i, 'actions', values, 'num', counts)
axs[i].set_title('Intention '+str(i))
axs[i].set_xlabel('action id')
axs[i].set_ylabel('num of actions')
axs[i].bar(x+u*width, counts_vis, width=0.1, label='user '+str(u))
axs[i].set_xticks(np.arange(len(x)))
axs[i].set_xticklabels(act_name)
axs[i].set_ylim([0,80])
axs[0].legend(loc='upper right', ncol=1)
plt.tight_layout()
plt.savefig('dataset/'+'test'+'_gt_dist.png')
plt.show()
def plot_act():
full_data = []
for i in range(7):
with open('dataset/strategy_dataset/' + 'test' + '_label_' + str(i) + '.pkl', 'rb') as f:
data = pickle.load(f)
full_data.append(data)
width = 0.1
for i in range(7):
fig, axs = plt.subplots(5)
fig.set_figheight(10)
fig.set_figwidth(16)
act_name = ["Italic", "Bold", "Underline", "Indent", "Align", "FontSize", "FontFamily"]
for u in range(len(full_data[i])): # 5 users
x = np.arange(len(full_data[i][u]))
axs[u].set_xlabel('action id')
axs[u].set_ylabel('num of actions')
axs[u].plot(x, full_data[i][u])
axs[0].legend(loc='upper right', ncol=1)
plt.tight_layout()
#plt.savefig('test'+'_act.png')
plt.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("func", help="select what function to run. view_clean_data, split_org_data, calc_gt_prob, plot_gt_dist, plot_act", type=str)
args = parser.parse_args()
if args.func == 'view_clean_data':
view_clean_data() # view original keyboad and mouse interaction dataset
if args.func == 'split_org_data':
split_org_data() # split the original keyboad and mouse interaction dataset. User 1-11 for training, rest for testing
if args.func == 'calc_gt_prob':
calc_gt_prob() # see unique label in train set
if args.func == 'plot_gt_dist':
plot_gt_dist() # plot the label distribution of test set
if args.func == 'plot_act':
plot_act() # plot the label of test set

View file

@ -0,0 +1,56 @@
import numpy as np
from numpy import genfromtxt
import csv
import pandas
from pathlib import Path
import argparse
def sample_single_act(pred_path, save_path, j):
data = pandas.read_csv(pred_path).values
total_data = []
for u in range(1,6):
act_data = data[data[:,1]==u]
final_save_path = save_path + "/rate_" + str(j) + "_act_" + str(int(u)) + "_pred.csv"
head = []
for r in range(7):
head.append('act'+str(r+1))
head.append('task_name')
head.append('gt')
head.insert(0,'action_id')
pandas.DataFrame(act_data[:,1:]).to_csv(final_save_path, header=head)
def main():
# parsing parameters
parser = argparse.ArgumentParser(description='')
parser.add_argument('--batch_size', type=int, default=8, help='batch size')
parser.add_argument('--lr', type=float, default=1e-4, help='learning rate')
parser.add_argument('--hidden_size', type=int, default=64, help='hidden_size')
parser.add_argument('--model_type', type=str, default='lstmlast', help='model type')
args = parser.parse_args()
task = np.arange(7)
user_num = 5
bs = args.batch_size
lr = args.lr # 1e-4
hs = args.hidden_size #128
model_type = args.model_type #'lstmlast'
rate = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
for i in task:
for j in rate:
for l in range(user_num):
pred_path = "prediction/task" + str(i) + "/" + model_type + "_bs_" + str(bs) + "_lr_" + str(lr) + "_hidden_size_" + str(hs) + "/user" + str(l) + "_rate_" + str(j) + "_pred.csv"
if j == 100:
pred_path = "prediction/task" + str(i) + "/" + model_type + "_bs_" + str(bs) + "_lr_" + str(lr) + "_hidden_size_" + str(hs) + "/user" + str(l) + "_pred.csv"
save_path = "prediction/single_act/task" + str(i) + "/" + model_type + "_bs_" + str(bs) + "_lr_" + str(lr) + "_hidden_size_" + str(hs) + "/user" + str(l)
Path(save_path).mkdir(parents=True, exist_ok=True)
data = sample_single_act(pred_path, save_path, j)
if __name__ == '__main__':
# split the prediction by action sequence id, from 10% to 90%
main()

View file

@ -0,0 +1,5 @@
python3 sampler_single_act.py \
--batch_size 8 \
--lr 1e-4 \
--model_type lstmlast \
--hidden_size 128

View file

@ -0,0 +1,68 @@
import numpy as np
from numpy import genfromtxt
import csv
import pandas
import argparse
def sample_predciton(path, rate):
data = pandas.read_csv(path).values
task_list = [0, 1, 2, 3, 4, 5, 6]
start = 0
stop = 0
num_unique = np.unique(data[:,1])
samples = []
for j in task_list:
for i in num_unique:
inx = np.where((data[:,1] == i) & (data[:,-2] == j))
samples.append(data[inx])
for i in range(len(samples)):
n = int(len(samples[i])*(100-rate)/100)
if n == 0:
n = 1
samples[i] = samples[i][:-n]
if len(samples[i]) == 0:
print('len of after sampling',len(samples[i]))
return np.vstack(samples)
def main():
# parsing parameters
parser = argparse.ArgumentParser(description='')
parser.add_argument('--batch_size', type=int, default=8, help='batch size')
parser.add_argument('--lr', type=float, default=1e-4, help='learning rate')
parser.add_argument('--hidden_size', type=int, default=128, help='hidden_size')
parser.add_argument('--model_type', type=str, default='lstmlast', help='model type')
args = parser.parse_args()
task = np.arange(7)
user_num = 5
bs = args.batch_size
lr = args.lr # 1e-4
hs = args.hidden_size #128
model_type = args.model_type #'lstmlast'
rate = [10, 20, 30, 40, 50, 60, 70, 80, 90]
for i in task:
for j in rate:
for l in range(user_num):
pred_path = "prediction/task" + str(i) + "/" + model_type + "_bs_" + str(bs) + "_lr_" + str(lr) + "_hidden_size_" + str(hs) + "/user" + str(l) + "_pred.csv"
save_path = "prediction/task" + str(i) + "/" + model_type + "_bs_" + str(bs) + "_lr_" + str(lr) + "_hidden_size_" + str(hs) + "/user" + str(l) + "_rate_" + str(j) + "_pred.csv"
data = sample_predciton(pred_path, j)
head = []
for r in range(7):
head.append('act'+str(r+1))
head.append('task_name')
head.append('gt')
head.insert(0,'action_id')
pandas.DataFrame(data[:,1:]).to_csv(save_path, header=head)
if __name__ == '__main__':
# split the prediction by length, from 10% to 90%
main()

View file

@ -0,0 +1,5 @@
python3 sampler_user.py \
--batch_size 8 \
--lr 1e-4 \
--model_type lstmlast \
--hidden_size 128

View file

@ -0,0 +1,88 @@
import numpy as np
from numpy import genfromtxt
import matplotlib.pyplot as plt
from pathlib import Path
import argparse
def main():
parser = argparse.ArgumentParser(description='')
parser.add_argument('--batch_size', type=int, default=8, help='batch size')
parser.add_argument('--lr', type=float, default=1e-4, help='learning rate')
parser.add_argument('--hidden_size', type=int, default=128, help='hidden_size')
parser.add_argument('--model_type', type=str, default='lstmlast', help='model type')
parser.add_argument('--N', type=int, default=1, help='number of sequence for inference')
parser.add_argument('--user', type=int, default=1, help='number of users')
args = parser.parse_args()
plot_type = 'bar' # line bar
width = [-0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3]
# read data
user_data_list = []
for i in range(args.user):
model_data_list = []
path = "result/"+"N"+ str(args.N) + "/" + args.model_type + "bs_" + str(args.batch_size) + '_lr_' + str(args.lr) + '_hidden_size_' + str(args.hidden_size) + '_N' + str(args.N) + "_result_user" + str(i) +".csv"
data = genfromtxt(path, delimiter=',', skip_header =1)
for j in range(7):
data_temp = data[[1+7*j+j,2+7*j+j,3+7*j+j,4+7*j+j,5+7*j+j,6+7*j+j,7+7*j+j],:][:,[2,4,6,7]]
model_data_list.append(data_temp)
model_data_list = np.concatenate(model_data_list, axis=0)
user_data_list.append(model_data_list)
color = ['royalblue', 'lightgreen', 'tomato', 'indigo', 'plum', 'darkorange', 'blue']
legend = ['rule 1', 'rule 2', 'rule 3', 'rule 4', 'rule 5', 'rule 6', 'rule 7']
fig, axs = plt.subplots(7, sharex=True, sharey=True)
fig.set_figheight(14)
fig.set_figwidth(25)
for ax in range(7):
y_total = []
y_low_total = []
y_high_total = []
for j in range(7):
y= []
y_low = []
y_high = []
for i in range(len(user_data_list)):
y.append(user_data_list[i][j+ax*7][0])
y_low.append(user_data_list[i][j+ax*7][2])
y_high.append(user_data_list[i][j+ax*7][3])
y_total.append(y)
y_low_total.append(y_low)
y_high_total.append(y_high)
print()
print("user mean of mean prob: ", np.mean(y))
print("user mean of sd prob: ", np.std(y))
for i in range(7):
if plot_type == 'line':
axs[ax].plot(range(args.user), y_total[i], color=color[i], label=legend[i])
axs[ax].fill_between(range(args.user), y_low_total[i], y_high_total[i], color=color[i],alpha=0.3 )
if plot_type == 'bar':
width = [-0.36, -0.24, -0.12, 0, 0.12, 0.24, 0.36]
yerror = [np.array(y_total[i])-np.array(y_low_total[i]), np.array(y_high_total[i])-np.array(y_total[i])]
axs[ax].bar(np.arange(args.user)+width[i], y_total[i], width=0.08, yerr=yerror, label=legend[i], color=color[i])
axs[ax].tick_params(axis='x', which='both', length=0)
axs[ax].set_ylabel('prob', fontsize=22)
for k,x in enumerate(np.arange(args.user)+width[i]):
y = y_total[i][k] + yerror[1][k]
axs[ax].annotate(f'{y_total[i][k]:.2f}', (x, y), textcoords='offset points', xytext=(-18,3), fontsize=16)
axs[0].text(-0.1, 0.9, 'True Intention:', horizontalalignment='center', verticalalignment='center', transform=axs[0].transAxes, fontsize= 22) # all: -0.3,0.5 3rows: -0.5,0.5
axs[ax].text(-0.1, 0.5, legend[ax], horizontalalignment='center', verticalalignment='center', transform=axs[ax].transAxes, fontsize= 22, color=color[ax])
axs[ax].tick_params(axis='both', which='major', labelsize=16)
plt.xticks(range(args.user),('1', '2', '3', '4', '5'))
plt.xlabel('user', fontsize= 22)
handles, labels = axs[0].get_legend_handles_labels()
plt.ylim([0, 1])
Path("figure").mkdir(parents=True, exist_ok=True)
if plot_type == 'line':
plt.savefig("figure/"+"N"+ str(args.N) + "_ "+ args.model_type + "_bs_" + str(args.batch_size) + '_lr_' + str(args.lr) + '_hidden_size_' + str(args.hidden_size) + '_N' + str(args.N) + "_line.png", bbox_inches='tight')
if plot_type == 'bar':
plt.savefig("figure/"+"N"+ str(args.N) + "_ "+ args.model_type + "_bs_" + str(args.batch_size) + '_lr_' + str(args.lr) + '_hidden_size_' + str(args.hidden_size) + '_N' + str(args.N) + "_bar.png", bbox_inches='tight')
plt.show()
if __name__ == '__main__':
main()

View file

@ -0,0 +1,8 @@
python3 plot_user.py \
--model_type lstmlast_ \
--batch_size 8 \
--lr 1e-4 \
--hidden_size 128 \
--N 1 \
--user 5

View file

@ -0,0 +1,99 @@
import numpy as np
from numpy import genfromtxt
import matplotlib.pyplot as plt
import argparse
def main():
parser = argparse.ArgumentParser(description='')
parser.add_argument('--batch_size', type=int, default=8, help='batch size')
parser.add_argument('--lr', type=float, default=1e-4, help='learning rate')
parser.add_argument('--hidden_size', type=int, default=128, help='hidden_size')
parser.add_argument('--model_type', type=str, default='lstmlast', help='model type')
parser.add_argument('--N', type=int, default=1, help='number of sequence for inference')
parser.add_argument('--user', type=int, default=1, help='number of users')
args = parser.parse_args()
plot_type = 'bar' # line bar
act_series = 5
# read data
plot_list = []
for act in range(1,act_series+1):
user_data_list = []
for i in range(args.user):
model_data_list = []
path = "result/"+"N"+ str(args.N) + "/" + args.model_type + "bs_" + str(args.batch_size) + '_lr_' + str(args.lr) + '_hidden_size_' + str(args.hidden_size) + '_N' + str(args.N) + "_result_user" + str(i) + "_rate__100" + "_act_" + str(act) +".csv"
data = genfromtxt(path, delimiter=',', skip_header =1)
for j in range(7):
data_temp = data[[1+7*j+j,2+7*j+j,3+7*j+j,4+7*j+j,5+7*j+j,6+7*j+j,7+7*j+j],:][:,[2,4,6,7]]
model_data_list.append(data_temp)
model_data_list = np.concatenate(model_data_list, axis=0)
print(model_data_list.shape)
user_data_list.append(model_data_list)
color = ['royalblue', 'lightgreen', 'tomato', 'indigo', 'plum', 'darkorange', 'blue']
legend = ['rule 1', 'rule 2', 'rule 3', 'rule 4', 'rule 5', 'rule 6', 'rule 7']
fig, axs = plt.subplots(7, sharex=True, sharey=True)
fig.set_figheight(14)
fig.set_figwidth(25)
for ax in range(7):
y_total = []
y_low_total = []
y_high_total = []
for j in range(7):
y= []
y_low = []
y_high = []
for i in range(len(user_data_list)):
y.append(user_data_list[i][j+ax*7][0])
y_low.append(user_data_list[i][j+ax*7][2])
y_high.append(user_data_list[i][j+ax*7][3])
y_total.append(y)
y_low_total.append(y_low)
y_high_total.append(y_high)
print()
print("user mean of mean prob: ", np.mean(y))
print("user mean of sd prob: ", np.std(y))
for i in range(7):
if plot_type == 'line':
axs[ax].plot(range(args.user), y_total[i], color=color[i], label=legend[i])
axs[ax].fill_between(range(args.user), y_low_total[i], y_high_total[i], color=color[i],alpha=0.3 )
if plot_type == 'bar':
width = [-0.36, -0.24, -0.12, 0, 0.12, 0.24, 0.36]
yerror = [np.array(y_total[i])-np.array(y_low_total[i]), np.array(y_high_total[i])-np.array(y_total[i])]
axs[ax].bar(np.arange(args.user)+width[i], y_total[i], width=0.08, yerr=[np.array(y_total[i])-np.array(y_low_total[i]), np.array(y_high_total[i])-np.array(y_total[i])], label=legend[i], color=color[i])
axs[ax].tick_params(axis='x', which='both', length=0)
axs[ax].set_ylabel('prob', fontsize=36) # was 22,
for k,x in enumerate(np.arange(args.user)+width[i]):
y = y_total[i][k] + yerror[1][k]
axs[ax].annotate(f'{y_total[i][k]:.2f}', (x, y), textcoords='offset points', xytext=(-18,3), fontsize=16) #was 16
axs[0].text(-0.17, 1.2, 'True Intention:', horizontalalignment='center', verticalalignment='center', transform=axs[0].transAxes, fontsize= 46) # was -0.1 0.9 25
axs[ax].text(-0.17, 0.5, legend[ax], horizontalalignment='center', verticalalignment='center', transform=axs[ax].transAxes, fontsize= 46, color=color[ax]) # was 25
axs[ax].tick_params(axis='both', which='major', labelsize=42) # was 18
for tick in axs[ax].xaxis.get_major_ticks():
tick.set_pad(20)
plt.xticks(range(args.user),('1', '2', '3', '4', '5'))
plt.xlabel('user', fontsize= 42) # was 22
handles, labels = axs[0].get_legend_handles_labels()
plt.ylim([0, 1])
plt.tight_layout()
if plot_type == 'line':
plt.savefig("figure/"+"N"+ str(args.N) + "_ "+ args.model_type + "_bs_" + str(args.batch_size) + '_lr_' + str(args.lr) + '_hidden_size_' + str(args.hidden_size) + '_N' + str(args.N) + "_act_series" + str(act) + "_line_all_individual.png", bbox_inches='tight')
if plot_type == 'bar':
plt.savefig("figure/"+"N"+ str(args.N) + "_ "+ args.model_type + "_bs_" + str(args.batch_size) + '_lr_' + str(args.lr) + '_hidden_size_' + str(args.hidden_size) + '_N' + str(args.N) + "_act_series" + str(act) + "_bar_all_individual.png", bbox_inches='tight')
if plot_type == 'line':
plt.savefig("figure/"+"N"+ str(args.N) + "_ "+ args.model_type + "_bs_" + str(args.batch_size) + '_lr_' + str(args.lr) + '_hidden_size_' + str(args.hidden_size) + '_N' + str(args.N) + "_act_series" + str(act) + "_line_all_individual.eps", bbox_inches='tight', format='eps')
if plot_type == 'bar':
plt.savefig("figure/"+"N"+ str(args.N) + "_ "+ args.model_type + "_bs_" + str(args.batch_size) + '_lr_' + str(args.lr) + '_hidden_size_' + str(args.hidden_size) + '_N' + str(args.N) + "_act_series" + str(act) + "_bar_all_individual.eps", bbox_inches='tight', format='eps')
#plt.show()
if __name__ == '__main__':
main()

View file

@ -0,0 +1,8 @@
python3 plot_user_all_individual.py \
--model_type lstmlast_ \
--batch_size 8 \
--lr 1e-4 \
--hidden_size 128 \
--N 1 \
--user 5

View file

@ -0,0 +1,93 @@
import numpy as np
from numpy import genfromtxt
import matplotlib.pyplot as plt
model_type = "lstmlast_"
batch_size = 8
lr = 1e-4
hidden_size = 128
N = 1
user = 5
plot_type = 'bar' # line bar
act_series = 5
# read data
plot_list = []
for act in range(1,act_series+1):
user_data_list = []
for i in range(user):
model_data_list = []
path = "result/"+"N"+ str(N) + "/" + model_type + "bs_" + str(batch_size) + '_lr_' + str(lr) + '_hidden_size_' + str(hidden_size) + '_N' + str(N) + "_result_user" + str(i) + "_rate__100" + "_act_" + str(act) +".csv"
data = genfromtxt(path, delimiter=',', skip_header =1)
for j in range(7):
data_temp = data[[1+7*j+j,2+7*j+j,3+7*j+j,4+7*j+j,5+7*j+j,6+7*j+j,7+7*j+j],:][:,[2,4,6,7]]
model_data_list.append(data_temp)
model_data_list = np.concatenate(model_data_list, axis=0)
print(model_data_list.shape)
user_data_list.append(model_data_list)
color = ['royalblue', 'lightgreen', 'tomato', 'indigo', 'plum', 'darkorange', 'blue']
legend = ['rule 1', 'rule 2', 'rule 3', 'rule 4', 'rule 5', 'rule 6', 'rule 7']
fig, axs = plt.subplots(7, sharex=True, sharey=True)
fig.set_figheight(14)
fig.set_figwidth(25)
for ax in range(7):
y_total = []
y_low_total = []
y_high_total = []
for j in range(7):
y= []
y_low = []
y_high = []
for i in range(len(user_data_list)):
y.append(user_data_list[i][j+ax*7][0])
y_low.append(user_data_list[i][j+ax*7][2])
y_high.append(user_data_list[i][j+ax*7][3])
y_total.append(y)
y_low_total.append(y_low)
y_high_total.append(y_high)
print()
print(legend[ax])
print("user mean of mean prob: ", np.mean(y))
print("user mean of sd prob: ", np.std(y))
for i in range(7):
if plot_type == 'line':
axs[ax].plot(range(user), y_total[i], color=color[i], label=legend[i])
axs[ax].fill_between(range(user), y_low_total[i], y_high_total[i], color=color[i],alpha=0.3 )
if plot_type == 'bar':
width = [-0.36, -0.24, -0.12, 0, 0.12, 0.24, 0.36]
yerror = [np.array(y_total[i])-np.array(y_low_total[i]), np.array(y_high_total[i])-np.array(y_total[i])]
axs[ax].bar(np.arange(user)+width[i], y_total[i], width=0.08, yerr=[np.array(y_total[i])-np.array(y_low_total[i]), np.array(y_high_total[i])-np.array(y_total[i])], label=legend[i], color=color[i])
axs[ax].tick_params(axis='x', which='both', length=0)
axs[ax].set_ylabel('prob', fontsize=26) # was 22,
axs[ax].set_title(legend[ax], color=color[ax], fontsize=26)
for k,x in enumerate(np.arange(user)+width[i]):
y = y_total[i][k] + yerror[1][k]
axs[ax].annotate(f'{y_total[i][k]:.2f}', (x, y), textcoords='offset points', xytext=(-18,3), fontsize=16) #was 16
#axs[0].text(-0.17, 1.2, 'True Intention:', horizontalalignment='center', verticalalignment='center', transform=axs[0].transAxes, fontsize= 46) # was -0.1 0.9 25
#axs[ax].text(-0.17, 0.5, legend[ax], horizontalalignment='center', verticalalignment='center', transform=axs[ax].transAxes, fontsize= 46, color=color[ax]) # was 25
axs[ax].tick_params(axis='both', which='major', labelsize=18) # was 18
for tick in axs[ax].xaxis.get_major_ticks():
tick.set_pad(20)
plt.xticks(range(user),('1', '2', '3', '4', '5'))
plt.xlabel('user', fontsize= 26) # was 22
handles, labels = axs[0].get_legend_handles_labels()
plt.ylim([0, 1.2])
plt.tight_layout()
if plot_type == 'line':
plt.savefig("figure/"+"N"+ str(N) + "_ "+ model_type + "_bs_" + str(batch_size) + '_lr_' + str(lr) + '_hidden_size_' + str(hidden_size) + '_N' + str(N) + "_act_series" + str(act) + "_line_all_individual_chiw.png", bbox_inches='tight')
if plot_type == 'bar':
plt.savefig("figure/"+"N"+ str(N) + "_ "+ model_type + "_bs_" + str(batch_size) + '_lr_' + str(lr) + '_hidden_size_' + str(hidden_size) + '_N' + str(N) + "_act_series" + str(act) + "_bar_all_individual_chiw.png", bbox_inches='tight')
#plt.show()
if plot_type == 'line':
plt.savefig("figure/"+"N"+ str(N) + "_ "+ model_type + "_bs_" + str(batch_size) + '_lr_' + str(lr) + '_hidden_size_' + str(hidden_size) + '_N' + str(N) + "_act_series" + str(act) + "_line_all_individual_chiw.eps", bbox_inches='tight', format='eps')
if plot_type == 'bar':
plt.savefig("figure/"+"N"+ str(N) + "_ "+ model_type + "_bs_" + str(batch_size) + '_lr_' + str(lr) + '_hidden_size_' + str(hidden_size) + '_N' + str(N) + "_act_series" + str(act) + "_bar_all_individual_chiw.eps", bbox_inches='tight', format='eps')

View file

@ -0,0 +1,88 @@
import numpy as np
from numpy import genfromtxt
import matplotlib.pyplot as plt
import argparse
def main():
parser = argparse.ArgumentParser(description='')
parser.add_argument('--batch_size', type=int, default=8, help='batch size')
parser.add_argument('--lr', type=float, default=1e-4, help='learning rate')
parser.add_argument('--hidden_size', type=int, default=128, help='hidden_size')
parser.add_argument('--model_type', type=str, default='lstmlast', help='model type')
parser.add_argument('--N', type=int, default=1, help='number of sequence for inference')
parser.add_argument('--user', type=int, default=1, help='number of users')
args = parser.parse_args()
width = [-0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3]
rate_user_data_list = []
for r in range(0,101,10): # rate = range(0,101,10)
# read data
user_data_list = []
for i in range(args.user):
model_data_list = []
path = "result/"+"N"+ str(args.N) + "/" + args.model_type + "bs_" + str(args.batch_size) + '_lr_' + str(args.lr) + '_hidden_size_' + str(args.hidden_size) + '_N' + str(args.N) + "_result_user" + str(i) + "_rate__" + str(r) +".csv"
data = genfromtxt(path, delimiter=',', skip_header =1)
for j in range(7):
data_temp = data[[1+7*j+j,2+7*j+j,3+7*j+j,4+7*j+j,5+7*j+j,6+7*j+j,7+7*j+j],:][:,[2,4,6,7]]
model_data_list.append(data_temp)
model_data_list = np.concatenate(model_data_list, axis=0)
if i == 4:
print(model_data_list.shape, model_data_list)
user_data_list.append(model_data_list)
model_data_list_total = np.stack(user_data_list)
print(model_data_list_total.shape)
mean_user_data = np.mean(model_data_list_total,axis=0)
print(mean_user_data.shape)
rate_user_data_list.append(mean_user_data)
color = ['royalblue', 'lightgreen', 'tomato', 'indigo', 'plum', 'darkorange', 'blue']
legend = ['rule 1', 'rule 2', 'rule 3', 'rule 4', 'rule 5', 'rule 6', 'rule 7']
fig, axs = plt.subplots(7, sharex=True, sharey=True)
fig.set_figheight(10) # all sample rate: 10; 3 row: 8
fig.set_figwidth(20)
for ax in range(7):
y_total = []
y_low_total = []
y_high_total = []
for j in range(7):
y= []
y_low = []
y_high = []
for i in range(len(rate_user_data_list)):
y.append(rate_user_data_list[i][j+ax*7][0])
y_low.append(rate_user_data_list[i][j+ax*7][2])
y_high.append(rate_user_data_list[i][j+ax*7][3])
y_total.append(y)
y_low_total.append(y_low)
y_high_total.append(y_high)
print()
print("user mean of mean prob: ", np.mean(y))
print("user mean of sd prob: ", np.std(y))
for i in range(7):
axs[ax].plot(range(0,101,10), y_total[i], color=color[i], label=legend[i])
axs[ax].fill_between(range(0,101,10), y_low_total[i], y_high_total[i], color=color[i],alpha=0.3 )
axs[ax].set_xticks(range(0,101,10))
axs[ax].set_ylabel('prob', fontsize=20)
axs[0].text(-0.125, 0.9, 'True Intention:', horizontalalignment='center', verticalalignment='center', transform=axs[0].transAxes, fontsize= 20)
axs[ax].text(-0.125, 0.5, legend[ax], horizontalalignment='center', verticalalignment='center', transform=axs[ax].transAxes, fontsize= 20, color=color[ax])
axs[ax].tick_params(axis='both', which='major', labelsize=16)
plt.xlabel('Percentage of occurred actions in one action sequence', fontsize= 20)
handles, labels = axs[0].get_legend_handles_labels()
plt.xlim([0, 101])
plt.ylim([0, 1])
plt.savefig("figure/"+"N"+ str(args.N) + "_ "+ args.model_type + "_bs_" + str(args.batch_size) + '_lr_' + str(args.lr) + '_hidden_size_' + str(args.hidden_size) + '_N' + str(args.N) + "_rate_full.png", bbox_inches='tight')
plt.show()
if __name__ == '__main__':
main()

View file

@ -0,0 +1,8 @@
python3 plot_user_length_10_steps.py \
--model_type lstmlast_ \
--batch_size 8 \
--lr 1e-4 \
--hidden_size 128 \
--N 1 \
--user 5

View file

@ -0,0 +1,90 @@
import numpy as np
from numpy import genfromtxt
import matplotlib.pyplot as plt
import argparse
def main():
parser = argparse.ArgumentParser(description='')
parser.add_argument('--batch_size', type=int, default=8, help='batch size')
parser.add_argument('--lr', type=float, default=1e-4, help='learning rate')
parser.add_argument('--hidden_size', type=int, default=128, help='hidden_size')
parser.add_argument('--model_type', type=str, default='lstmlast', help='model type')
parser.add_argument('--N', type=int, default=1, help='number of sequence for inference')
parser.add_argument('--user', type=int, default=1, help='number of users')
args = parser.parse_args()
width = [-0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3]
act_series = 5
for act in range(1,act_series+1):
rate_user_data_list = []
for r in range(0,101,10):
# read data
user_data_list = []
for i in range(args.user):
model_data_list = []
path = "result/"+"N"+ str(args.N) + "/" + args.model_type + "bs_" + str(args.batch_size) + '_lr_' + str(args.lr) + '_hidden_size_' + str(args.hidden_size) + '_N' + str(args.N) + "_result_user" + str(i) + "_rate__" + str(r) + "_act_" + str(act) +".csv"
data = genfromtxt(path, delimiter=',', skip_header =1)
for j in range(7):
data_temp = data[[1+7*j+j,2+7*j+j,3+7*j+j,4+7*j+j,5+7*j+j,6+7*j+j,7+7*j+j],:][:,[2,4,6,7]]
model_data_list.append(data_temp)
model_data_list = np.concatenate(model_data_list, axis=0)
user_data_list.append(model_data_list)
model_data_list_total = np.stack(user_data_list)
mean_user_data = np.mean(model_data_list_total,axis=0)
rate_user_data_list.append(mean_user_data)
color = ['royalblue', 'lightgreen', 'tomato', 'indigo', 'plum', 'darkorange', 'blue']
legend = ['rule 1', 'rule 2', 'rule 3', 'rule 4', 'rule 5', 'rule 6', 'rule 7']
fig, axs = plt.subplots(7, sharex=True, sharey=True)
fig.set_figheight(14) # was 10
fig.set_figwidth(20)
for ax in range(7):
y_total = []
y_low_total = []
y_high_total = []
for j in range(7):
y= []
y_low = []
y_high = []
for i in range(len(rate_user_data_list)):
y.append(rate_user_data_list[i][j+ax*7][0])
y_low.append(rate_user_data_list[i][j+ax*7][2])
y_high.append(rate_user_data_list[i][j+ax*7][3])
y_total.append(y)
y_low_total.append(y_low)
y_high_total.append(y_high)
print()
print("user mean of mean prob: ", np.mean(y))
print("user mean of sd prob: ", np.std(y))
for i in range(7):
axs[ax].plot(range(0,101,10), y_total[i], color=color[i], label=legend[i])
axs[ax].fill_between(range(0,101,10), y_low_total[i], y_high_total[i], color=color[i],alpha=0.3 )
axs[ax].set_xticks(range(0,101,10))
axs[ax].set_ylabel('prob', fontsize=26) # was 20
axs[0].text(-0.15, 1.2, 'True Intention:', horizontalalignment='center', verticalalignment='center', transform=axs[0].transAxes, fontsize= 36) # was -0.125 20
axs[ax].text(-0.15, 0.5, legend[ax], horizontalalignment='center', verticalalignment='center', transform=axs[ax].transAxes, fontsize= 36, color=color[ax]) # -0.125 20
axs[ax].tick_params(axis='y', which='major', labelsize=24) # was 16
axs[ax].tick_params(axis='x', which='major', labelsize=24) # was 16
for tick in axs[ax].xaxis.get_major_ticks():
tick.set_pad(20)
plt.xlabel('Percentage of occurred actions in one action sequence', fontsize= 36) # was 20
handles, labels = axs[0].get_legend_handles_labels()
plt.xlim([0, 101])
plt.ylim([0, 1])
plt.savefig("figure/"+"N"+ str(args.N) + "_ "+ args.model_type + "_bs_" + str(args.batch_size) + '_lr_' + str(args.lr) + '_hidden_size_' + str(args.hidden_size) + '_N' + str(args.N) + "_act_series" + str(act) + "_rate_ful_all_individuall.png", bbox_inches='tight')
#plt.show()
if __name__ == '__main__':
main()

View file

@ -0,0 +1,8 @@
python3 plot_user_length_10_steps_all_individual.py \
--model_type lstmlast_ \
--batch_size 8 \
--lr 1e-4 \
--hidden_size 128 \
--N 1 \
--user 5

View file

@ -0,0 +1,90 @@
import numpy as np
from numpy import genfromtxt
import matplotlib.pyplot as plt
model_type = "lstmlast_"
batch_size = 8
lr = 1e-4
hidden_size = 128
N = 1
user = 5
width = [-0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3]
act_series = 5
for act in range(1,act_series+1):
rate_user_data_list = []
for r in range(0,101,10):
# read data
print(r)
user_data_list = []
for i in range(user):
model_data_list = []
path = "result/"+"N"+ str(N) + "/" + model_type + "bs_" + str(batch_size) + '_lr_' + str(lr) + '_hidden_size_' + str(hidden_size) + '_N' + str(N) + "_result_user" + str(i) + "_rate__" + str(r) + "_act_" + str(act) +".csv"
data = genfromtxt(path, delimiter=',', skip_header =1)
for j in range(7):
data_temp = data[[1+7*j+j,2+7*j+j,3+7*j+j,4+7*j+j,5+7*j+j,6+7*j+j,7+7*j+j],:][:,[2,4,6,7]]
model_data_list.append(data_temp)
model_data_list = np.concatenate(model_data_list, axis=0)
user_data_list.append(model_data_list)
model_data_list_total = np.stack(user_data_list)
print(model_data_list_total.shape)
mean_user_data = np.mean(model_data_list_total,axis=0)
print(mean_user_data.shape)
rate_user_data_list.append(mean_user_data)
color = ['royalblue', 'lightgreen', 'tomato', 'indigo', 'plum', 'darkorange', 'blue']
legend = ['rule 1', 'rule 2', 'rule 3', 'rule 4', 'rule 5', 'rule 6', 'rule 7']
fig, axs = plt.subplots(7, sharex=True, sharey=True)
fig.set_figheight(14) # was 10
fig.set_figwidth(20)
for ax in range(7):
y_total = []
y_low_total = []
y_high_total = []
for j in range(7):
y= []
y_low = []
y_high = []
for i in range(len(rate_user_data_list)):
y.append(rate_user_data_list[i][j+ax*7][0])
y_low.append(rate_user_data_list[i][j+ax*7][2])
y_high.append(rate_user_data_list[i][j+ax*7][3])
y_total.append(y)
y_low_total.append(y_low)
y_high_total.append(y_high)
print()
print(legend[ax])
print("user mean of mean prob: ", np.mean(y))
print("user mean of sd prob: ", np.std(y))
for i in range(7):
axs[ax].plot(range(0,101,10), y_total[i], color=color[i], label=legend[i])
axs[ax].fill_between(range(0,101,10), y_low_total[i], y_high_total[i], color=color[i],alpha=0.3 )
axs[ax].set_xticks(range(0,101,10))
axs[ax].set_ylabel('prob', fontsize=26) # was 20
axs[ax].set_title(legend[ax], color=color[ax], fontsize=26)
#axs[0].text(-0.15, 1.2, 'True Intention:', horizontalalignment='center', verticalalignment='center', transform=axs[0].transAxes, fontsize= 36) # was -0.125 20
#axs[ax].text(-0.15, 0.5, legend[ax], horizontalalignment='center', verticalalignment='center', transform=axs[ax].transAxes, fontsize= 36, color=color[ax]) # -0.125 20
axs[ax].tick_params(axis='y', which='major', labelsize=18) # was 16
axs[ax].tick_params(axis='x', which='major', labelsize=18) # was 16
for tick in axs[ax].xaxis.get_major_ticks():
tick.set_pad(20)
plt.xlabel('Percentage of occurred actions in one action sequence', fontsize= 26) # was 20
handles, labels = axs[0].get_legend_handles_labels()
plt.xlim([0, 101])
plt.ylim([0, 1.1])
plt.tight_layout()
plt.savefig("figure/"+"N"+ str(N) + "_ "+ model_type + "_bs_" + str(batch_size) + '_lr_' + str(lr) + '_hidden_size_' + str(hidden_size) + '_N' + str(N) + "_act_series" + str(act) + "_rate_ful_all_individuall_chiw.png", bbox_inches='tight')
#plt.show()

Binary file not shown.

View file

@ -0,0 +1,26 @@
data {
int<lower=1> I; // number of question options (22)
int<lower=0> N; // number of questions being asked by the user
int<lower=1> K; // number of strategies
// observed "true" questions of the user
int q[N];
// array of predicted probabilities of questions given strategies
// coming from the forward neural network
matrix[I, K] P_q_S[N];
}
parameters {
// probabiliy vector of the strategies being applied by the user
// to be inferred by the model here
simplex[K] P_S;
}
model {
for (n in 1:N) {
// marginal probability vector of the questions being asked
vector[I] theta = P_q_S[n] * P_S;
// categorical likelihood
target += categorical_lpmf(q[n] | theta);
}
// priors
target += dirichlet_lpdf(P_S | rep_vector(1.0, K));
}

View file

@ -0,0 +1,157 @@
library(tidyverse)
library(cmdstanr)
library(dplyr)
model_type <- "lstmlast"
batch_size <- "8"
lr <- "0.0001"
hidden_size <- "128"
model_type <- paste0(model_type, "_bs_", batch_size, "_lr_", lr, "_hidden_size_", hidden_size)
print(model_type)
set.seed(9736734)
user_num <- 5
user <-c(0:(user_num-1))
strategies <- c(0:6) # 7 tasks
print(strategies)
print(length(strategies))
N <- 1
# read data from csv
sel <- vector("list", length(strategies))
for (u in seq_along(user)){
dat <- vector("list", length(strategies))
print(paste0('user: ', u))
for (i in seq_along(strategies)) {
dat[[i]] <- read.csv(paste0("../prediction/task", strategies[[i]], "/", model_type, "/user", user[[u]], "_pred", ".csv"))
dat[[i]]$assumed_strategy <- strategies[[i]]
dat[[i]]$index <- dat[[i]]$action_id # sample based on intention
dat[[i]]$id <- dat[[i]][,1] # sample based on intention
}
# reset N after inference
N = 1
# select one action series from one intention
if (user[[u]] == 0){
sel[[1]]<-dat[[1]] %>%
group_by(task_name) %>%
sample_n(N)
sel[[1]] <- data.frame(sel[[1]])
}
# filter data from the selected action series, N series per intention
for (i in seq_along(strategies)) {
dat[[i]]<-subset(dat[[i]], dat[[i]]$action_id == sel[[1]]$action_id[1])
}
row.names(dat) <- NULL
# create save path
dir.create(file.path("result"), showWarnings = FALSE)
dir.create(file.path(paste0("result/", "N", N)), showWarnings = FALSE)
save_path <- paste0("result/", "N", N, "/", model_type, "_N", N, "_", "result","_user", user[[u]], ".csv")
dat <- do.call(rbind, dat) %>%
mutate(index = as.numeric(as.factor(id))) %>%
rename(true_strategy = task_name) %>%
mutate(
true_strategy = factor(
true_strategy, levels = 0:6,
labels = strategies
),
q_type = case_when(
gt %in% c(3,4,5) ~ 0,
gt %in% c(1,2,3,4,5,6,7) ~ 1,
gt %in% c(1,2,3,4) ~ 2,
gt %in% c(1,4,5,6,7) ~ 3,
gt %in% c(1,2,3,6,7) ~ 4,
gt %in% c(2,3,4,5,6,7) ~ 5,
gt %in% c(1,2,3,4,5,6,7) ~ 6,
)
)
dat_obs <- dat %>% filter(assumed_strategy == strategies[[i]])
N <- nrow(dat_obs)
print(c("N: ", N))
q <- dat_obs$gt
true_strategy <- dat_obs$true_strategy
K <- length(unique(dat$assumed_strategy))
print(c("K: ", K))
I <- 7
P_q_S <- array(dim = c(N, I, K))
for (n in 1:N) {
#print(n)
P_q_S[n, , ] <- dat %>%
filter(index == n) %>%
select(matches("^act[[:digit:]]+$")) %>%
as.matrix() %>%
t()
for (k in 1:K) {
# normalize probabilities
P_q_S[n, , k] <- P_q_S[n, , k] / sum(P_q_S[n, , k])
}
}
print(c('dim P_q_S',dim(P_q_S)))
mod <- cmdstan_model("strategy_inference_model.stan")
sub <- which(true_strategy == 0) # "0"
print(c('sub', sub))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
fit_0 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),"/temp"))
print(fit_0$summary(NULL, c("mean","sd")))
sub <- which(true_strategy == 1)
print(c('sub', sub))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
fit_1 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),"/temp"))
print(fit_1$summary(NULL, c("mean","sd")))
sub <- which(true_strategy == 2)
print(c('sub', sub))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
fit_2 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),"/temp"))
print(fit_2$summary(NULL, c("mean","sd")))
sub <- which(true_strategy == 3)
print(c('sub', sub))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
fit_3 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),"/temp"))
print(fit_3$summary(NULL, c("mean","sd")))
sub <- which(true_strategy == 4)
print(c('sub', sub))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
fit_4 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),"/temp"))
print(fit_4$summary(NULL, c("mean","sd")))
sub <- which(true_strategy == 5)
print(c('sub', sub))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
fit_5 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),"/temp"))
print(fit_5$summary(NULL, c("mean","sd")))
sub <- which(true_strategy == 6)
print(c('sub', sub))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
fit_6 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),"/temp"))
print(fit_6$summary(NULL, c("mean","sd")))
# save csv
df <-rbind(fit_0$summary(), fit_1$summary(), fit_2$summary(), fit_3$summary(), fit_4$summary(), fit_5$summary(), fit_6$summary())
write.csv(df,file=save_path,quote=FALSE)
}

View file

@ -0,0 +1,239 @@
library(tidyverse)
library(cmdstanr)
library(dplyr)
# using every action sequence from each user
model_type <- "lstmlast"
batch_size <- "8"
lr <- "0.0001"
hidden_size <- "128"
model_type <- paste0(model_type, "_bs_", batch_size, "_lr_", lr, "_hidden_size_", hidden_size)
rates <- c("_0", "_10", "_20", "_30", "_40", "_50", "_60", "_70", "_80", "_90", "_100")
user_num <- 5
user <-c(0:(user_num-1))
strategies <- c(0:6) # 7 tasks
print('strategies')
print(strategies)
print('strategies length')
print(length(strategies))
N <- 1
unique_act_id <- c(1:5)
print('unique_act_id')
print(unique_act_id)
set.seed(9746234)
for (act_id in seq_along(unique_act_id)){
for (u in seq_along(user)){
print('user')
print(u)
for (rate in rates) {
N <- 1
dat <- vector("list", length(strategies))
for (i in seq_along(strategies)) {
if (rate=="_0"){
# read data from csv
dat[[i]] <- read.csv(paste0("../prediction/single_act/task", strategies[[i]], "/", model_type, "/user", user[[u]], "/rate_10", "_act_", unique_act_id[act_id], "_pred", ".csv"))
} else{
dat[[i]] <- read.csv(paste0("../prediction/single_act/task", strategies[[i]], "/", model_type, "/user", user[[u]], "/rate", rate, "_act_", unique_act_id[act_id], "_pred", ".csv"))
}
# strategy assumed for prediction
dat[[i]]$assumed_strategy <- strategies[[i]]
dat[[i]]$index <- dat[[i]]$action_id # sample based on intention
dat[[i]]$id <- dat[[i]][,1] # sample based on intention
}
save_path <- paste0("result/", "N", N, "/", model_type, "_N", N, "_", "result","_user", user[[u]], "_rate_", rate, "_act_", unique_act_id[act_id], ".csv")
dat_act <- do.call(rbind, dat) %>%
mutate(index = as.numeric(as.factor(id))) %>%
rename(true_strategy = task_name) %>%
mutate(
true_strategy = factor(
true_strategy, levels = 0:6,
labels = strategies
),
q_type = case_when(
gt %in% c(3,4,5) ~ 0,
gt %in% c(1,2,3,4,5,6,7) ~ 1,
gt %in% c(1,2,3,4) ~ 2,
gt %in% c(1,4,5,6,7) ~ 3,
gt %in% c(1,2,3,6,7) ~ 4,
gt %in% c(2,3,4,5,6,7) ~ 5,
gt %in% c(1,2,3,4,5,6,7) ~ 6,
)
)
dat_obs <- dat_act %>% filter(assumed_strategy == strategies[[i]])
N <- nrow(dat_obs)
print(c("N: ", N))
print(c("dim dat_act: ", dim(dat_act)))
q <- dat_obs$gt
true_strategy <- dat_obs$true_strategy
K <- length(unique(dat_act$assumed_strategy))
I <- 7
P_q_S <- array(dim = c(N, I, K))
for (n in 1:N) {
print(n)
P_q_S[n, , ] <- dat_act %>%
filter(index == n) %>%
select(matches("^act[[:digit:]]+$")) %>%
as.matrix() %>%
t()
for (k in 1:K) {
# normalize probabilities
P_q_S[n, , k] <- P_q_S[n, , k] / sum(P_q_S[n, , k])
}
}
print(c("dim(P_q_S)", dim(P_q_S)))
# read stan model
mod <- cmdstan_model(paste0(getwd(),"/strategy_inference_model.stan"))
if (rate=="_0"){
sub <- integer(0)
} else {
sub <- which(true_strategy == 0) # "0"
}
#print(sub)
#print(length(sub))
if (length(sub) == 1){
temp <- P_q_S[sub, , ]
dim(temp) <- c(1, dim(temp))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = temp)
} else{
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
}
fit_0 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),'/temp'))
print(fit_0$summary(NULL, c("mean","sd")))
if (rate=="_0"){
sub <- integer(0)
} else {
sub <- which(true_strategy == 1)
}
#print(sub)
#print(length(sub))
if (length(sub) == 1){
temp <- P_q_S[sub, , ]
dim(temp) <- c(1, dim(temp))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = temp)
} else{
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
}
fit_1 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),'/temp'))
print(fit_1$summary(NULL, c("mean","sd")))
if (rate=="_0"){
sub <- integer(0)
} else {
sub <- which(true_strategy == 2)
}
#print(sub)
#print(length(sub))
if (length(sub) == 1){
temp <- P_q_S[sub, , ]
dim(temp) <- c(1, dim(temp))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = temp)
} else{
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
}
fit_2 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),'/temp'))
print(fit_2$summary(NULL, c("mean","sd")))
if (rate=="_0"){
sub <- integer(0)
} else {
sub <- which(true_strategy == 3)
}
#print(sub)
#print(length(sub))
if (length(sub) == 1){
temp <- P_q_S[sub, , ]
dim(temp) <- c(1, dim(temp))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = temp)
} else{
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
}
fit_3 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),'/temp'))
print(fit_3$summary(NULL, c("mean","sd")))
if (rate=="_0"){
sub <- integer(0)
} else {
sub <- which(true_strategy == 4)
}
#print(sub)
#print(length(sub))
if (length(sub) == 1){
temp <- P_q_S[sub, , ]
dim(temp) <- c(1, dim(temp))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = temp)
} else{
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
}
fit_4 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),'/temp'))
print(fit_4$summary(NULL, c("mean","sd")))
if (rate=="_0"){
sub <- integer(0)
} else {
sub <- which(true_strategy == 5)
}
#print(sub)
#print(length(sub))
if (length(sub) == 1){
temp <- P_q_S[sub, , ]
dim(temp) <- c(1, dim(temp))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = temp)
} else{
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
}
fit_5 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),'/temp'))
print(fit_5$summary(NULL, c("mean","sd")))
if (rate=="_0"){
sub <- integer(0)
} else {
sub <- which(true_strategy == 6)
}
#print(sub)
#print(length(sub))
if (length(sub) == 1){
temp <- P_q_S[sub, , ]
dim(temp) <- c(1, dim(temp))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = temp)
} else{
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
}
fit_6 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),'/temp'))
print(fit_6$summary(NULL, c("mean","sd")))
# save csv
df <-rbind(fit_0$summary(), fit_1$summary(), fit_2$summary(), fit_3$summary(), fit_4$summary(), fit_5$summary(), fit_6$summary())
write.csv(df,file=save_path,quote=FALSE)
}
}
}

View file

@ -0,0 +1,238 @@
library(tidyverse)
library(cmdstanr)
library(dplyr)
# index order of the strategies assumed throughout
model_type <- "lstmlast"
batch_size <- "8"
lr <- "0.0001"
hidden_size <- "128"
model_type <- paste0(model_type, "_bs_", batch_size, "_lr_", lr, "_hidden_size_", hidden_size)
rates <- c("_0", "_10", "_20", "_30", "_40", "_50", "_60", "_70", "_80", "_90", "_100")
user_num <- 5
user <-c(0:(user_num-1))
strategies <- c(0:6) # 7 tasks
print(strategies)
print(length(strategies))
N <- 1
set.seed(9736754)
#read data from csv
sel <- vector("list", length(strategies))
for (u in seq_along(user)){
print('user')
print(u)
for (rate in rates) {
dat <- vector("list", length(strategies))
for (i in seq_along(strategies)) {
if (rate=="_0"){
dat[[i]] <- read.csv(paste0("../prediction/task", strategies[[i]], "/", model_type, "/user", user[[u]], "_rate_10", "_pred", ".csv"))
} else if (rate=="_100"){
dat[[i]] <- read.csv(paste0("../prediction/task", strategies[[i]], "/", model_type, "/user", user[[u]], "_pred", ".csv"))
} else{
dat[[i]] <- read.csv(paste0("../prediction/task", strategies[[i]], "/", model_type, "/user", user[[u]], "_rate", rate, "_pred", ".csv"))
}
# strategy assumed for prediction
dat[[i]]$assumed_strategy <- strategies[[i]]
dat[[i]]$index <- dat[[i]]$action_id
dat[[i]]$id <- dat[[i]][,1]
}
# reset N after inference
N <- 1
# select all action series and infer every one
if (rate == "_0"){
sel[[1]]<-dat[[1]] %>%
group_by(task_name) %>%
sample_n(N)
sel[[1]] <- data.frame(sel[[1]])
unique_act_id <- unique(sel[[1]]$action_id)
}
print(sel[[1]]$action_id)
print(sel[[1]]$task_name)
print(dat[[1]]$task_name)
for (i in seq_along(strategies)) {
dat[[i]]<-subset(dat[[i]], dat[[i]]$action_id == sel[[1]]$action_id[1])
}
row.names(dat) <- NULL
print(c('action id', dat[[1]]$action_id))
print(c('action id', dat[[2]]$action_id))
print(c('action id', dat[[3]]$action_id))
dir.create(file.path(paste0("result/", "N", N)), showWarnings = FALSE)
save_path <- paste0("result/", "N", N, "/", model_type, "_N", N, "_", "result","_user", user[[u]], "_rate_", rate, ".csv")
dat_act <- do.call(rbind, dat) %>%
mutate(index = as.numeric(as.factor(id))) %>%
rename(true_strategy = task_name) %>%
mutate(
true_strategy = factor(
true_strategy, levels = 0:6,
labels = strategies
),
q_type = case_when(
gt %in% c(3,4,5) ~ 0,
gt %in% c(1,2,3,4,5,6,7) ~ 1,
gt %in% c(1,2,3,4) ~ 2,
gt %in% c(1,4,5,6,7) ~ 3,
gt %in% c(1,2,3,6,7) ~ 4,
gt %in% c(2,3,4,5,6,7) ~ 5,
gt %in% c(1,2,3,4,5,6,7) ~ 6,
)
)
dat_obs <- dat_act %>% filter(assumed_strategy == strategies[[i]]) # put_fridge, was num
N <- nrow(dat_obs)
print(c("N: ", N))
print(c("dim dat_act: ", dim(dat_act)))
q <- dat_obs$gt
true_strategy <- dat_obs$true_strategy
K <- length(unique(dat_act$assumed_strategy))
I <- 7
P_q_S <- array(dim = c(N, I, K))
for (n in 1:N) {
print(n)
P_q_S[n, , ] <- dat_act %>%
filter(index == n) %>%
select(matches("^act[[:digit:]]+$")) %>%
as.matrix() %>%
t()
for (k in 1:K) {
# normalize probabilities
P_q_S[n, , k] <- P_q_S[n, , k] / sum(P_q_S[n, , k])
}
}
print(c("dim(P_q_S)", dim(P_q_S)))
mod <- cmdstan_model(paste0(getwd(),"/strategy_inference_model.stan"))
if (rate=="_0"){
sub <- integer(0)
} else {
sub <- which(true_strategy == 0) # "0"
}
if (length(sub) == 1){
temp <- P_q_S[sub, , ]
dim(temp) <- c(1, dim(temp))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = temp)
} else{
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
}
fit_0 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),"/temp"))
print(fit_0$summary(NULL, c("mean","sd")))
if (rate=="_0"){
sub <- integer(0)
} else {
sub <- which(true_strategy == 1)
}
if (length(sub) == 1){
temp <- P_q_S[sub, , ]
dim(temp) <- c(1, dim(temp))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = temp)
} else{
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
}
fit_1 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),"/temp"))
print(fit_1$summary(NULL, c("mean","sd")))
if (rate=="_0"){
sub <- integer(0)
} else {
sub <- which(true_strategy == 2)
}
if (length(sub) == 1){
temp <- P_q_S[sub, , ]
dim(temp) <- c(1, dim(temp))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = temp)
} else{
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
}
fit_2 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),"/temp"))
print(fit_2$summary(NULL, c("mean","sd")))
if (rate=="_0"){
sub <- integer(0)
} else {
sub <- which(true_strategy == 3)
}
if (length(sub) == 1){
temp <- P_q_S[sub, , ]
dim(temp) <- c(1, dim(temp))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = temp)
} else{
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
}
fit_3 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),"/temp"))
print(fit_3$summary(NULL, c("mean","sd")))
if (rate=="_0"){
sub <- integer(0)
} else {
sub <- which(true_strategy == 4)
}
if (length(sub) == 1){
temp <- P_q_S[sub, , ]
dim(temp) <- c(1, dim(temp))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = temp)
} else{
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
}
fit_4 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),"/temp"))
print(fit_4$summary(NULL, c("mean","sd")))
if (rate=="_0"){
sub <- integer(0)
} else {
sub <- which(true_strategy == 5)
}
if (length(sub) == 1){
temp <- P_q_S[sub, , ]
dim(temp) <- c(1, dim(temp))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = temp)
} else{
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
}
fit_5 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),"/temp"))
print(fit_5$summary(NULL, c("mean","sd")))
if (rate=="_0"){
sub <- integer(0)
} else {
sub <- which(true_strategy == 6)
}
if (length(sub) == 1){
temp <- P_q_S[sub, , ]
dim(temp) <- c(1, dim(temp))
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = temp)
} else{
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
}
fit_6 <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),"/temp"))
print(fit_6$summary(NULL, c("mean","sd")))
# save csv
df <-rbind(fit_0$summary(), fit_1$summary(), fit_2$summary(), fit_3$summary(), fit_4$summary(), fit_5$summary(), fit_6$summary())
write.csv(df,file=save_path,quote=FALSE)
}
}

View file

@ -0,0 +1,10 @@
import torch
import matplotlib as plt
import pickle
print(pickle.format_version)
import pandas
print(torch.__version__)
print('matplotlib: {}'.format(plt.__version__))
print(pandas.__version__)

158
keyboard_and_mouse/test.py Normal file
View file

@ -0,0 +1,158 @@
import pickle
import numpy as np
from torch.utils.data import Dataset, DataLoader
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import shutil
import matplotlib.pyplot as plt
import argparse
from networks import ActionDemo2Predicate
from pathlib import Path
from termcolor import colored
import pandas as pd
print('torch version: ',torch.__version__)
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(DEVICE)
torch.manual_seed(256)
class test_dataset(Dataset):
def __init__(self, x, label, action_id):
self.x = x
self.idx = action_id
self.labels = label
def __getitem__(self, index):
x = self.x[index]
label = self.labels[index]
action_idx = self.idx[index]
return x, label, action_idx
def __len__(self):
return len(self.labels)
def test_model(model, test_dataloader, DEVICE):
model.to(DEVICE)
model.eval()
test_acc = []
logits = []
labels = []
action_ids = []
for iter, (x, label, action_id) in enumerate(test_dataloader):
with torch.no_grad():
x = torch.tensor(x).to(DEVICE)
label = torch.tensor(label).to(DEVICE)
logps = model(x)
logps = F.softmax(logps, 1)
logits.append(logps.cpu().numpy())
labels.append(label.cpu().numpy())
action_ids.append(action_id)
argmax_Y = torch.max(logps, 1)[1].view(-1, 1)
test_acc.append((label.float().view(-1, 1) == argmax_Y.float()).sum().item() / len(label.float().view(-1, 1)) * 100)
test_acc = np.mean(np.array(test_acc))
print('test acc {:.4f}'.format(test_acc))
logits = np.concatenate(logits, axis=0)
labels = np.concatenate(labels, axis=0)
action_ids = np.concatenate(action_ids, axis=0)
return logits, labels, action_ids
def main():
# parsing parameters
parser = argparse.ArgumentParser(description='')
parser.add_argument('--resume', type=bool, default=False, help='resume training')
parser.add_argument('--batch_size', type=int, default=32, help='batch size')
parser.add_argument('--lr', type=float, default=1e-1, help='learning rate')
parser.add_argument('--model_type', type=str, default='lstmlast', help='model type')
parser.add_argument('--hidden_size', type=int, default=256, help='hidden_size')
parser.add_argument('--epochs', type=int, default=100, help='training epoch')
parser.add_argument('--dataset_path', type=str, default='dataset/strategy_dataset/', help='dataset path')
parser.add_argument('--weight_decay', type=float, default=0.9, help='wight decay for Adam optimizer')
parser.add_argument('--demo_hidden', type=int, default=512, help='demo_hidden')
parser.add_argument('--dropout', type=float, default=0.5, help='dropout rate')
parser.add_argument('--checkpoint', type=str, default='checkpoints/', help='checkpoints path')
args = parser.parse_args()
path = args.checkpoint+args.model_type+'_bs_'+str(args.batch_size)+'_lr_'+str(args.lr)+'_hidden_size_'+str(args.hidden_size)
# read models
models = []
for i in range(7): # 7 tasks
net = ActionDemo2Predicate(args)
model_path = path + '/task' + str(i) + '_checkpoint.ckpt' # _checkpoint
net.load(model_path)
models.append(net)
for u in range(5):
task_pred = []
task_target = []
task_act = []
task_task_name = []
for i in range(7): # 7 tasks
test_loader = []
# # read dataset test data
with open(args.dataset_path + 'test_data_' + str(i) + '.pkl', 'rb') as f:
data_x = pickle.load(f)
with open(args.dataset_path + 'test_label_' + str(i) + '.pkl', 'rb') as f:
data_y = pickle.load(f)
with open(args.dataset_path + 'test_action_id_' + str(i) + '.pkl', 'rb') as f:
act_idx = pickle.load(f)
x = data_x[u]
y = data_y[u]
act = act_idx[u]
test_set = test_dataset(np.array(x), np.array(y)-1, np.array(act))
test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, num_workers=4, drop_last=True)
preds = []
targets = []
actions = []
task_names = []
for j in range(7): # logits from all models
pred, target, action = test_model(models[j], test_loader, DEVICE)
preds.append(pred)
targets.append(target)
actions.append(action)
task_names.append(np.full(target.shape, i)) #assumed intention
task_pred.append(preds)
task_target.append(targets)
task_act.append(actions)
task_task_name.append(task_names)
for i in range(7):
preds = []
targets = []
actions = []
task_names = []
for j in range(7):
preds.append(task_pred[j][i])
targets.append(task_target[j][i]+1) # gt value add one
actions.append(task_act[j][i])
task_names.append(task_task_name[j][i])
preds = np.concatenate(preds, axis=0)
targets = np.concatenate(targets, axis=0)
actions = np.concatenate(actions, axis=0)
task_names = np.concatenate(task_names, axis=0)
write_data = np.concatenate((np.reshape(actions, (-1, 1)), preds, np.reshape(task_names, (-1, 1)), np.reshape(targets, (-1, 1))), axis=1)
output_path = 'prediction/' + 'task' +str(i) + '/' + args.model_type+'_bs_'+str(args.batch_size)+'_lr_'+str(args.lr)+'_hidden_size_'+str(args.hidden_size)
Path(output_path).mkdir(parents=True, exist_ok=True)
output_path = output_path + '/user' + str(u) + '_pred.csv'
print(write_data.shape)
head = []
for j in range(7):
head.append('act'+str(j+1))
head.append('task_name')
head.append('gt')
head.insert(0,'action_id')
pd.DataFrame(write_data).to_csv(output_path, header=head)
if __name__ == '__main__':
main()

View file

@ -0,0 +1,12 @@
python3 test.py \
--resume False \
--batch_size 8 \
--lr 1e-4 \
--model_type lstmlast \
--epochs 100 \
--demo_hidden 128 \
--hidden_size 128 \
--dropout 0.5 \
--dataset_path dataset/strategy_dataset/ \
--checkpoint checkpoints/ \
--weight_decay 1e-4

145
keyboard_and_mouse/train.py Normal file
View file

@ -0,0 +1,145 @@
import pickle
import numpy as np
from torch.utils.data import Dataset, DataLoader
import torch
import torch.nn as nn
import torch.optim as optim
import shutil
import matplotlib.pyplot as plt
import argparse
from networks import ActionDemo2Predicate
print('torch version: ',torch.__version__)
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(DEVICE)
torch.manual_seed(256)
class train_dataset(Dataset):
def __init__(self, x, label):
self.x = x
self.labels = label
def __getitem__(self, index):
x = self.x[index]
label = self.labels[index]
return x, label #, img_idx
def __len__(self):
return len(self.labels)
class test_dataset(Dataset):
def __init__(self, x, label):
self.x = x
self.labels = label
def __getitem__(self, index):
x = self.x[index]
label = self.labels[index]
return x, label #, img_idx
def __len__(self):
return len(self.labels)
def train_model(model, train_dataloader, criterion, optimizer, num_epochs, DEVICE, path, resume):
running_loss = 0
train_losses = 10
is_best_acc = False
is_best_train_loss = False
best_train_acc = 0
best_train_loss = 10
start_epoch = 0
accuracy = 0
model.to(DEVICE)
model.train()
for epoch in range(start_epoch, num_epochs):
epoch_losses = []
train_acc = []
epoch_loss = 0
for iter, (x, labels) in enumerate(train_dataloader):
x = torch.tensor(x).to(DEVICE)
labels = torch.tensor(labels).to(DEVICE)
optimizer.zero_grad()
logps = model(x)
loss = criterion(logps, labels)
loss.backward()
optimizer.step()
epoch_loss += loss.detach().item()
argmax_Y = torch.max(logps, 1)[1].view(-1, 1)
train_acc.append((labels.float().view(-1, 1) == argmax_Y.float()).sum().item() / len(labels.float().view(-1, 1)) * 100)
epoch_loss /= (iter + 1)
epoch_losses.append(epoch_loss)
train_acc = np.mean(np.array(train_acc))
print('Epoch {}, train loss {:.4f}, train acc {:.4f}'.format(epoch, epoch_loss, train_acc))
is_best_acc = train_acc > best_train_acc
best_train_acc = max(train_acc, best_train_acc)
is_best_train_loss = best_train_loss < epoch_loss
best_train_loss = min(epoch_loss, best_train_loss)
if is_best_acc:
model.save(path + '_model_best.ckpt')
model.save(path + '_checkpoint.ckpt')
#scheduler.step()
def save_checkpoint(state, is_best, path, filename='_checkpoint.pth.tar'):
torch.save(state, path + filename)
if is_best:
shutil.copyfile(path + filename, path +'_model_best.pth.tar')
def main():
# parsing parameters
parser = argparse.ArgumentParser(description='')
parser.add_argument('--resume', type=bool, default=False, help='resume training')
parser.add_argument('--batch_size', type=int, default=32, help='batch size')
parser.add_argument('--lr', type=float, default=1e-1, help='learning rate')
parser.add_argument('--model_type', type=str, default='lstmlast', help='model type')
parser.add_argument('--hidden_size', type=int, default=256, help='hidden_size')
parser.add_argument('--epochs', type=int, default=100, help='training epoch')
parser.add_argument('--dataset_path', type=str, default='dataset/strategy_dataset/', help='dataset path')
parser.add_argument('--weight_decay', type=float, default=0.9, help='wight decay for Adam optimizer')
parser.add_argument('--demo_hidden', type=int, default=512, help='demo_hidden')
parser.add_argument('--dropout', type=float, default=0.5, help='dropout rate')
parser.add_argument('--checkpoint', type=str, default='checkpoints/', help='checkpoints path')
args = parser.parse_args()
# create checkpoints path
from pathlib import Path
path = args.checkpoint+args.model_type+'_bs_'+str(args.batch_size)+'_lr_'+str(args.lr)+'_hidden_size_'+str(args.hidden_size)
Path(path).mkdir(parents=True, exist_ok=True)
print('total epochs for training: ', args.epochs)
# read dataset
train_loader = []
test_loader = []
loss_funcs = []
optimizers = []
models = []
parameters = []
for i in range(7): # 7 tasks
# train data
with open(args.dataset_path + 'train_data_' + str(i) + '.pkl', 'rb') as f:
data_x = pickle.load(f)
with open(args.dataset_path + 'train_label_' + str(i) + '.pkl', 'rb') as f:
data_y = pickle.load(f)
train_set = train_dataset(np.array(data_x), np.array(data_y)-1)
train_loader.append(DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=4))
print('task', str(i), 'train data size: ', len(train_set))
net = ActionDemo2Predicate(args)
models.append(net)
parameter = net.parameters()
loss_funcs.append(nn.CrossEntropyLoss())
optimizers.append(optim.Adam(parameter, lr=args.lr, weight_decay=args.weight_decay))
for i in range(7):
path_save = path + '/task' + str(i)
print('checkpoint save path: ', path_save)
train_model(models[i], train_loader[i], loss_funcs[i], optimizers[i], args.epochs, DEVICE, path_save, args.resume)
if __name__ == '__main__':
main()

View file

@ -0,0 +1,12 @@
python3 train.py \
--resume False \
--batch_size 8 \
--lr 1e-4 \
--model_type lstmlast \
--epochs 100 \
--demo_hidden 128 \
--hidden_size 128 \
--dropout 0.5 \
--dataset_path dataset/strategy_dataset/ \
--checkpoint checkpoints/ \
--weight_decay 1e-4

46
watch_and_help/README.md Normal file
View file

@ -0,0 +1,46 @@
# Watch And Help Dataset
Codes to reproduce results on WAH dataset[^1]
[^1]: Modified based on WAH train and test codes (https://github.com/xavierpuigf/watch_and_help)[https://github.com/xavierpuigf/watch_and_help].
## Data
Extact `dataset/watch_data.zip`
## Neural Network
Run `sh scripts/train_watch_strategy_full.sh` to train the model
To test model, either use trained model or extract checkpoints `checkpoints/train_strategy_full/lstmlast.zip`
Run `sh scripts/test_watch_strategy_full.sh` to test the model
## Prediction Split
Create artificial users and sample predictions from 10% to 90%
```
cd stan
sh split_user.sh
sh sampler_user.sh
```
## Bayesian Inference
Run inference to get results of user intention prediction and action length (0% to 100%) for all users
```
Rscript strategy_inference_test.R
```
Plot intention prediction results and 10% to 100% of actions results
```
sh plot_user_length.sh
sh plot_user_length_10_steps.sh

Binary file not shown.

View file

@ -0,0 +1,13 @@
python3 watch_strategy_full/predicate-train-strategy.py \
--testset test_task \
--gpu_id 0 \
--batch_size 32 \
--demo_hidden 512 \
--model_type lstmlast \
--dropout 0 \
--inputtype actioninput \
--inference 2 \
--single 1 \
--resume '' \
--loss_type ce \
--checkpoint checkpoints/train_strategy_full/lstmlast_cross_entropy_bs_32_iter_2000_train_task_prob

View file

@ -0,0 +1,13 @@
python3 watch_strategy_full/predicate-train-strategy.py \
--gpu_id 0 \
--model_lr_rate 3e-4 \
--batch_size 32 \
--demo_hidden 512 \
--model_type lstmlast \
--inputtype actioninput \
--dropout 0 \
--single 1 \
--resume '' \
--checkpoint checkpoints/train_strategy_full/lstmlast \
--train_iters 2000 \
--loss_type ce\

View file

@ -0,0 +1,132 @@
import numpy as np
from numpy import genfromtxt
import matplotlib.pyplot as plt
import argparse
import pathlib
def main(args):
if args.task_type == 'new_test_task':
user = 9
N = 1
if args.task_type == 'test_task':
user = 92
N = 1
rate = 100
widths = [-0.1, 0, 0.1]
user_table = [6, 13, 15, 19, 20, 23, 27, 30, 33, 44, 46, 49, 50, 51, 52, 53, 54, 56, 65, 71, 84]
# read data
model_data_list = []
user_list = []
if not args.plot_user_list:
for i in range(user):
path = "result/"+args.task_type+"/user"+str(user)+"/"+args.loss_type+"/N"+ str(N) + "/" + args.model_type + "_N" + str(N) + "_result_" + str(rate) + "_user" + str(i) +".csv"
data = genfromtxt(path, delimiter=',', skip_header =1)
data = data[[1,2,3,5,6,7,9,10,11],:][:,[2,4,6,7]]
model_data_list.append(data)
if args.task_type == 'test_task':
user_list.append(np.transpose(data[:,[0]]))
else:
for i in range(user):
for t in user_table:
if t == i+1:
path = "result/"+args.task_type+"/user"+str(user)+"/"+args.loss_type+"/N"+ str(N) + "/" + args.model_type + "_N" + str(N) + "_result_" + str(rate) + "_user" + str(i) +".csv"
data = genfromtxt(path, delimiter=',', skip_header =1)
data = data[[1,2,3,5,6,7,9,10,11],:][:,[2,4,6,7]]
model_data_list.append(data)
user_list.append(np.transpose(data[:,[0]]))
color = ['royalblue', 'lightgreen', 'tomato']
legend = ['put fridge', 'put\n dishwasher', 'read book']
fig, axs = plt.subplots(3, sharex=True, sharey=True)
fig.set_figheight(10) # all sample rate: 10; 3 row: 8
fig.set_figwidth(20)
for ax in range(3):
y_total = []
y_low_total = []
y_high_total = []
for j in range(3):
y= []
y_low = []
y_high = []
for i in range(len(model_data_list)):
y.append(model_data_list[i][j+ax*3][0])
y_low.append(model_data_list[i][j+ax*3][2])
y_high.append(model_data_list[i][j+ax*3][3])
y_total.append(y)
y_low_total.append(y_low)
y_high_total.append(y_high)
print()
print("user mean of mean prob: ", np.mean(y))
print("user mean of sd prob: ", np.std(y))
for i in range(3):
if args.plot_type == 'line':
axs[ax].plot(range(user), y_total[i], color=color[i], label=legend[i])
axs[ax].fill_between(range(user), y_low_total[i], y_high_total[i], color=color[i],alpha=0.3 )
if args.plot_type == 'bar':
if args.task_type == 'new_test_task':
widths = [-0.25, 0, 0.25]
yerror = [np.array(y_total[i])-np.array(y_low_total[i]), np.array(y_high_total[i])-np.array(y_total[i])]
axs[0].text(-0.19, 0.9, 'True Intention:', horizontalalignment='center', verticalalignment='center', transform=axs[0].transAxes, fontsize= 36)
axs[ax].bar(np.arange(user)+widths[i],y_total[i], width=0.2, yerr=yerror, color=color[i], label=legend[i])
axs[ax].tick_params(axis='x', which='both', pad=15, length=0)
plt.xticks(range(user), range(1,user+1))
axs[ax].set_ylabel('prob', fontsize= 36) # was 22
axs[ax].text(-0.19, 0.5, legend[ax], horizontalalignment='center', verticalalignment='center', transform=axs[ax].transAxes, fontsize= 36, color=color[ax])
plt.xlabel('user', fontsize= 40) # was 22
for k, x in enumerate(np.arange(user)+widths[i]):
y = y_total[i][k] + yerror[1][k]
axs[ax].annotate(f'{y_total[i][k]:.2f}', (x, y), textcoords='offset points', xytext=(-15, 3), fontsize=14)
if args.task_type == 'test_task':
if not args.plot_user_list:
axs[0].text(-0.19, 0.9, 'True Intention:', horizontalalignment='center', verticalalignment='center', transform=axs[0].transAxes, fontsize= 36)
axs[ax].errorbar(np.arange(user)+widths[i],y_total[i], yerr=[np.array(y_total[i])-np.array(y_low_total[i]), np.array(y_high_total[i])-np.array(y_total[i])],markerfacecolor=color[i], ecolor=color[i], markeredgecolor=color[i], label=legend[i],fmt='.k')
axs[ax].tick_params(axis='x', which='both', pad=15, length=0)
plt.xticks(range(user)[::5], range(1,user+1)[::5])
axs[ax].set_ylabel('prob', fontsize= 36)
axs[ax].text(-0.19, 0.5, legend[ax], horizontalalignment='center', verticalalignment='center', transform=axs[ax].transAxes, fontsize= 36, color=color[ax])
plt.xlabel('user', fontsize= 40)
else:
axs[0].text(-0.19, 0.9, 'True Intention:', horizontalalignment='center', verticalalignment='center', transform=axs[0].transAxes, fontsize= 36)
axs[ax].errorbar(np.arange(len(model_data_list))+widths[i],y_total[i], yerr=[np.array(y_total[i])-np.array(y_low_total[i]), np.array(y_high_total[i])-np.array(y_total[i])],markerfacecolor=color[i], ecolor=color[i], markeredgecolor=color[i], label=legend[i],fmt='.k')
axs[ax].tick_params(axis='x', which='both', pad=15, length=0)
plt.xticks(range(len(model_data_list)), user_table)
axs[ax].set_ylabel('prob', fontsize= 36)
#axs[ax].set_yticks(range(0.0,1.0, 0.25))
axs[ax].text(-0.19, 0.5, legend[ax], horizontalalignment='center', verticalalignment='center', transform=axs[ax].transAxes, fontsize= 36, color=color[ax])
plt.xlabel('user', fontsize= 40)
axs[ax].tick_params(axis='both', which='major', labelsize=30)
handles, labels = axs[0].get_legend_handles_labels()
plt.ylim([0, 1.08])
plt.tight_layout()
pathlib.Path("result/"+args.task_type+"/user"+str(user)+"/"+args.loss_type+"/figure/").mkdir(parents=True, exist_ok=True)
if args.task_type == 'test_task':
if not args.plot_user_list:
plt.savefig("result/"+args.task_type+"/user"+str(user)+"/"+args.loss_type+"/figure/"+"N"+ str(N)+"_"+args.model_type+"_rate_"+str(rate)+"_"+args.plot_type+"_test_set_1.png", bbox_inches='tight')
else:
plt.savefig("result/"+args.task_type+"/user"+str(user)+"/"+args.loss_type+"/figure/"+"N"+ str(N)+"_"+args.model_type+"_rate_"+str(rate)+"_"+args.plot_type+"_test_set_1_user_analysis.png", bbox_inches='tight')
if args.task_type == 'new_test_task':
plt.savefig("result/"+args.ask_type+"/user"+str(user)+"/"+args.loss_type+"/figure/"+"N"+ str(N)+"_"+args.model_type+"_rate_"+str(rate)+"_"+args.plot_type+"_test_set_2.png", bbox_inches='tight')
plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='')
parser.add_argument('--loss_type', type=str, default='ce')
parser.add_argument('--model_type', type=str, default="lstmlast" )
parser.add_argument('--plot_type', type=str, default='bar') # bar or line
parser.add_argument('--task_type', type=str, default='test_task')
parser.add_argument('--plot_user_list', action='store_true') # plot user_table or not
args = parser.parse_args()
main(args)

View file

@ -0,0 +1,5 @@
python3 plot_user_length.py \
--loss_type ce \
--model_type lstmlast \
--plot_type bar \
--task_type test_task

View file

@ -0,0 +1,88 @@
import numpy as np
from numpy import genfromtxt
import matplotlib.pyplot as plt
import argparse
import pathlib
def main():
parser = argparse.ArgumentParser(description='')
parser.add_argument('--loss_type', type=str, default='ce')
parser.add_argument('--model_type', type=str, default="lstmlast" )
parser.add_argument('--task_type', type=str, default='test_task')
args = parser.parse_args()
if args.task_type == 'new_test_task':
user = 9
N = 1
if args.task_type == 'test_task':
user = 92
N = 1
#rate = range(0,101,10)
rate_user_data_list = []
for r in range(0,101,10): # rate = range(0,101,10)
# read data
print(r)
model_data_list = []
for i in range(user):
path = "result/"+args.task_type+"/user"+str(user)+"/"+args.loss_type+"/N"+ str(N) + "/" + args.model_type + "_N" + str(N) + "_result_" + str(r) + "_user" + str(i) +".csv"
data = genfromtxt(path, delimiter=',', skip_header =1)
data = data[[1,2,3,5,6,7,9,10,11],:][:,[2,4,6,7]]
model_data_list.append(data)
#print(type(data))
model_data_list_total = np.stack(model_data_list)
mean_user_data = np.mean(model_data_list_total,axis=0)
rate_user_data_list.append(mean_user_data)
color = ['royalblue', 'lightgreen', 'tomato']
legend = ['put fridge', 'put\n dishwasher', 'read book']
fig, axs = plt.subplots(3, sharex=True, sharey=True)
fig.set_figheight(10) # all sample rate: 10; 3 row: 8
fig.set_figwidth(20)
axs[0].text(-0.145, 0.9, 'True Intention:', horizontalalignment='center', verticalalignment='center', transform=axs[0].transAxes, fontsize= 25) # all: -0.3,0.5 3rows: -0.5,0.5
for ax in range(3):
y_total = []
y_low_total = []
y_high_total = []
for j in range(3):
y= []
y_low = []
y_high = []
for i in range(len(rate_user_data_list)):
y.append(rate_user_data_list[i][j+ax*3][0])
y_low.append(rate_user_data_list[i][j+ax*3][2])
y_high.append(rate_user_data_list[i][j+ax*3][3])
y_total.append(y)
y_low_total.append(y_low)
y_high_total.append(y_high)
print()
print("user mean of mean prob: ", np.mean(y))
print("user mean of sd prob: ", np.std(y))
for i in range(3):
axs[ax].plot(range(0,101,10), y_total[i], color=color[i], label=legend[i])
axs[ax].fill_between(range(0,101,10), y_low_total[i], y_high_total[i], color=color[i],alpha=0.3 )
axs[ax].set_xticks(range(0,101,10))
axs[ax].set_ylabel('probability', fontsize=22)
axs[ax].text(-0.145, 0.5, legend[ax], horizontalalignment='center', verticalalignment='center', transform=axs[ax].transAxes, fontsize= 25, color=color[ax])
axs[ax].tick_params(axis='both', which='major', labelsize=18)
plt.xlabel('Percentage of observed actions in one action sequence', fontsize= 22)
handles, labels = axs[0].get_legend_handles_labels()
plt.xlim([0, 101])
plt.ylim([0, 1])
pathlib.Path("result/"+args.task_type+"/user"+str(user)+"/"+args.loss_type+"/figure/").mkdir(parents=True, exist_ok=True)
if args.task_type == 'test_task':
plt.savefig("result/"+args.task_type+"/user"+str(user)+ "/"+args.loss_type+"/figure/N"+ str(N) + "_"+args.model_type+"_rate_full_test_set_1.png", bbox_inches='tight')
if args.task_type == 'new_test_task':
plt.savefig("result/"+args.task_type+"/user"+str(user)+ "/"+args.loss_type+"/figure/N"+ str(N) + "_"+args.model_type+"_rate_full_test_set_2.png", bbox_inches='tight')
plt.show()
if __name__ == '__main__':
main()

View file

@ -0,0 +1,4 @@
python3 plot_user_length_10_steps.py \
--loss_type ce \
--model_type lstmlast \
--task_type test_task

View file

@ -0,0 +1,64 @@
import numpy as np
from numpy import genfromtxt
import csv
import pandas
import argparse
def sample_predciton(path, rate):
data = pandas.read_csv(path).values
task_list = [0, 1, 2]
start = 0
stop = 0
num_unique = np.unique(data[:,1])
#print('unique number', num_unique)
samples = []
for j in task_list:
for i in num_unique:
inx = np.where((data[:,1] == i) & (data[:,-2] == j))
samples.append(data[inx])
for i in range(len(samples)):
n = int(len(samples[i])*(100-rate)/100)
samples[i] = samples[i][:-n]
return np.vstack(samples)
def main():
parser = argparse.ArgumentParser(description='')
parser.add_argument('--LOSS', type=str, default='ce')
parser.add_argument('--MODEL_TYPE', type=str, default="lstmlast_cross_entropy_bs_32_iter_2000_train_task_prob" )
parser.add_argument('--EPOCHS', type=int, default=50)
parser.add_argument('--TASK', type=str, default='test_task')
args = parser.parse_args()
task = ['put_fridge', 'put_dishwasher', 'read_book']
sets = [args.TASK]
rate = [10, 20, 30, 40, 50, 60, 70, 80, 90]
for i in task:
for j in rate:
for k in sets:
if k == 'test_task':
user_num = 92
if k == 'new_test_task':
user_num = 9
for l in range(user_num):
pred_path = "prediction/" + k + "/" + "user" + str(user_num) + "/ce/" + i + "/" + "loss_weight_" + args.MODEL_TYPE + "_prediction_" + i + "_user" + str(l) + ".csv"
save_path = "prediction/" + k + "/" + "user" + str(user_num) + "/ce/" + i + "/" + "loss_weight_" + args.MODEL_TYPE + "_prediction_" + i + "_user" + str(l) + "_rate_" + str(j) + ".csv"
data = sample_predciton(pred_path, j)
head = []
for r in range(79):
head.append('act'+str(r+1))
head.append('task_name')
head.append('gt')
head.insert(0,'action_id')
pandas.DataFrame(data[:,1:]).to_csv(save_path, header=head)
if __name__ == '__main__':
main()

View file

@ -0,0 +1,5 @@
python3 sampler_user.py \
--TASK test_task \
--LOSS ce \
--MODEL_TYPE lstmlast \
--EPOCHS 50

View file

@ -0,0 +1,76 @@
library(tidyverse)
library(cmdstanr)
library(dplyr)
strategies <- c("put_fridge", "put_dishwasher", "read_book")
model_type <- "lstmlast_cross_entropy_bs_32_iter_2000_train_task_prob"
rate <- "_0"
task_type <- "new_test_task" # new_test_task test_task
loss_type <- "ce"
set.seed(9746234)
if (task_type=="test_task"){
user_num <- 92
user <-c(0:(user_num-1))
N <- 1
}
if (task_type=="new_test_task"){
user_num <- 9
user <-c(0:(user_num-1))
N <- 1
}
total_user_act1 <- vector("list", length(user_num))
total_user_act2 <- vector("list", length(user_num))
sel <- vector("list", length(strategies))
act_series <- vector("list", user_num)
for (u in seq_along(user)){
print('user')
print(u)
dat <- vector("list", length(strategies))
for (i in seq_along(strategies)) {
if (rate=="_0"){
dat[[i]] <- read.csv(paste0("prediction/", task_type, "/user", user_num, "/", loss_type, "/", strategies[[i]], "/loss_weight_", model_type, "_prediction_", strategies[[i]], "_user", user[[u]], "_rate_", "90", ".csv"))
} else if (rate=="_100"){
dat[[i]] <- read.csv(paste0("prediction/", task_type, "/user", user_num, "/", loss_type, "/", strategies[[i]], "/loss_weight_", model_type, "_prediction_", strategies[[i]], "_user", user[[u]], ".csv"))
} else{
dat[[i]] <- read.csv(paste0("prediction/", task_type, "/user", user_num, "/", loss_type, "/", strategies[[i]], "/loss_weight_", model_type, "_prediction_", strategies[[i]], "_user", user[[u]], "_rate", rate, ".csv"))
}
dat[[i]]$assumed_strategy <- strategies[[i]]
dat[[i]]$index <- dat[[i]]$action_id # sample based on intention
dat[[i]]$id <- dat[[i]][,1] # sample based on intention
}
N <- 1
# select all action series and infer every one
sel[[1]]<-dat[[1]] %>%
group_by(task_name) %>%
filter(task_name==1)
sel[[1]] <- data.frame(sel[[1]])
unique_act_id_t1 <- unique(sel[[1]]$action_id)
write.csv(unique_act_id_t1, paste0("result/", task_type, "/user", user_num, "/", loss_type, "/act", "/", "action_series_", "user_",u, "_put_dishwasher", ".csv"))
total_user_act1[[u]] <- unique_act_id_t1
sel[[1]]<-dat[[1]] %>%
group_by(task_name) %>%
filter(task_name==2)
sel[[1]] <- data.frame(sel[[1]])
unique_act_id_t1 <- unique(sel[[1]]$action_id)
write.csv(unique_act_id_t1, paste0("result/", task_type, "/user", user_num, "/", loss_type, "/act", "/", "action_series_", "user_",u, "_read_book", ".csv"))
total_user_act2[[u]] <- unique_act_id_t1
}
write.csv(total_user_act1, paste0("result/", task_type, "/user", user_num, "/", loss_type, "/act", "/", "action_series_", "_put_dishwasher_total", ".csv"))
write.csv(total_user_act2, paste0("result/", task_type, "/user", user_num, "/", loss_type, "/act", "/", "action_series_", "read_book_total", ".csv"))

View file

@ -0,0 +1,87 @@
import numpy as np
import pathlib
import argparse
np.random.seed(seed=100)
def sample_user(data, num_users, split_inx):
np.random.seed(seed=100)
num_unique3 = np.unique(data[:,1])
num_unique2 = num_unique3[0:split_inx[1]]
num_unique = num_unique3[0:split_inx[0]]
user_list1 = [np.random.choice(num_unique, int(len(num_unique)/num_users), replace=False) for i in range(num_users)]
user_list2 = [np.random.choice(num_unique2, int(len(num_unique2)/num_users), replace=False) for i in range(num_users)]
user_list3 = [np.random.choice(num_unique3, int(len(num_unique3)/num_users), replace=False) for i in range(num_users)]
user_data = []
for i in range(num_users): # len(user_list)
user_idx1 = [int(item) for item in user_list1[i]]
user_idx2 = [int(item) for item in user_list2[i]]
user_idx3 = [int(item) for item in user_list3[i]]
data_list = []
for j in range(len(user_idx1)):
inx = np.where((data[:,1] == user_idx1[j]) & (data[:,-2]==0))
data_list.append(data[inx])
for j in range(len(user_idx2)):
inx = np.where((data[:,1] == user_idx2[j]) & (data[:,-2]==1))
data_list.append(data[inx])
for j in range(len(user_idx3)):
inx = np.where((data[:,1] == user_idx3[j]) & (data[:,-2]==2))
data_list.append(data[inx])
user_data.append(np.vstack(data_list))
return user_data
def main():
parser = argparse.ArgumentParser(description='')
parser.add_argument('--LOSS', type=str, default='ce')
parser.add_argument('--MODEL_TYPE', type=str, default="lstmlast_cross_entropy_bs_32_iter_2000_train_task_prob" )
parser.add_argument('--EPOCHS', type=int, default=50)
parser.add_argument('--TASK', type=str, default='test_task')
args = parser.parse_args()
pref = ['put_fridge', 'put_dishwasher', 'read_book']
if args.TASK == 'new_test_task':
NUM_USER = 9 # 9 for 1 user 1 action
SPLIT_INX = [NUM_USER, 45]
if args.TASK == 'test_task':
NUM_USER = 92
SPLIT_INX = [NUM_USER, 229]
head = []
for j in range(79):
head.append('act'+str(j+1))
head.append('task_name')
head.append('gt')
head.insert(0,'action_id')
head.insert(0,'')
for i in pref:
path = "prediction/"+args.TASK+"/" + args.MODEL_TYPE + "/model_" + i + "_strategy_put_fridge" +".csv"
data = np.genfromtxt(path, skip_header=1, delimiter=',')
data_task_name = np.genfromtxt(path, skip_header=1, delimiter=',', usecols=-2, dtype=None)
data_task_name[data_task_name==b'put_fridge'] = 0
data_task_name[data_task_name==b'put_dishwasher'] = 1
data_task_name[data_task_name==b'read_book'] = 2
data[:,-2] = data_task_name.astype(np.float)
print("data length: ", len(data))
users_data = sample_user(data, NUM_USER, SPLIT_INX)
length = 0
pathlib.Path("prediction/"+args.TASK+"/user" + str(NUM_USER) + "/" + args.LOSS + "/" + i).mkdir(parents=True, exist_ok=True)
for j in range(len(users_data)):
save_path = "prediction/"+args.TASK+"/user" + str(NUM_USER) + "/" + args.LOSS + "/" + i +"/loss_weight_"+ args.MODEL_TYPE + "_prediction_"+ i + "_user"+str(j)+".csv"
length = length + len(users_data[j])
np.savetxt(save_path, users_data[j], delimiter=',', header=','.join(head))
print("user data length: ", length)
if __name__ == '__main__':
main()

View file

@ -0,0 +1,5 @@
python3 split_user.py \
--TASK test_task \
--LOSS ce \
--MODEL_TYPE lstmlast \
--EPOCHS 50

Binary file not shown.

View file

@ -0,0 +1,26 @@
data {
int<lower=1> I; // number of question options (22)
int<lower=0> N; // number of questions being asked by the user
int<lower=1> K; // number of strategies
// observed "true" questions of the user
int q[N];
// array of predicted probabilities of questions given strategies
// coming from the forward neural network
matrix[I, K] P_q_S[N];
}
parameters {
// probabiliy vector of the strategies being applied by the user
// to be inferred by the model here
simplex[K] P_S;
}
model {
for (n in 1:N) {
// marginal probability vector of the questions being asked
vector[I] theta = P_q_S[n] * P_S;
// categorical likelihood
target += categorical_lpmf(q[n] | theta);
}
// priors
target += dirichlet_lpdf(P_S | rep_vector(1.0, K));
}

View file

@ -0,0 +1,190 @@
library(tidyverse)
library(cmdstanr)
library(dplyr)
# index order of the strategies assumed throughout
strategies <- c("put_fridge", "put_dishwasher", "read_book")
model_type <- "lstmlast"
rates <- c("_0", "_10", "_20", "_30", "_40", "_50", "_60", "_70", "_80", "_90", "_100")
task_type <- "test_task" # new_test_task test_task
loss_type <- "ce"
set.seed(9746234)
if (task_type=="test_task"){
user_num <- 92
user <-c(38:(user_num-1))
N <- 1
}
if (task_type=="new_test_task"){
user_num <- 9
user <-c(0:(user_num-1))
N <- 1
}
# read data from csv
sel <- vector("list", length(strategies))
act_series <- vector("list", user_num)
for (u in seq_along(user)){
for (rate in rates) {
dat <- vector("list", length(strategies))
for (i in seq_along(strategies)) {
if (rate=="_0"){
dat[[i]] <- read.csv(paste0("prediction/", task_type, "/user", user_num, "/", loss_type, "/", strategies[[i]], "/loss_weight_", model_type, "_prediction_", strategies[[i]], "_user", user[[u]], "_rate_", "10", ".csv")) # _60
} else if (rate=="_100"){
dat[[i]] <- read.csv(paste0("prediction/", task_type, "/user", user_num, "/", loss_type, "/", strategies[[i]], "/loss_weight_", model_type, "_prediction_", strategies[[i]], "_user", user[[u]], ".csv")) # _60
} else{
dat[[i]] <- read.csv(paste0("prediction/", task_type, "/user", user_num, "/", loss_type, "/", strategies[[i]], "/loss_weight_", model_type, "_prediction_", strategies[[i]], "_user", user[[u]], "_rate", rate, ".csv")) # _60
}
# strategy assumed for prediction
dat[[i]]$assumed_strategy <- strategies[[i]]
dat[[i]]$index <- dat[[i]]$action_id # sample based on intention
dat[[i]]$id <- dat[[i]][,1] # sample based on intention
}
# reset N after inference
if (task_type=="test_task"){
N <- 1
}
if (task_type=="new_test_task"){
N <- 1
}
# select one action series from one intention
if (rate == "_0"){
sel[[1]]<-dat[[1]] %>%
group_by(task_name) %>%
sample_n(N)
sel[[1]] <- data.frame(sel[[1]])
act_series[[u]] <- sel[[1]]$action_id
#print(typeof(sel[[1]]))
#print(typeof(dat[[1]]))
#print(sel[[1]]$action_id[2])
}
print(c('unique action id', sel[[1]]$action_id))
# filter data from the selected action series, N series per intention
dat[[1]]<-subset(dat[[1]], dat[[1]]$action_id == sel[[1]]$action_id[1] | dat[[1]]$action_id == sel[[1]]$action_id[2] | dat[[1]]$action_id == sel[[1]]$action_id[3])
dat[[2]]<-subset(dat[[2]], dat[[2]]$action_id == sel[[1]]$action_id[1] | dat[[2]]$action_id == sel[[1]]$action_id[2] | dat[[2]]$action_id == sel[[1]]$action_id[3])
dat[[3]]<-subset(dat[[3]], dat[[3]]$action_id == sel[[1]]$action_id[1] | dat[[3]]$action_id == sel[[1]]$action_id[2] | dat[[3]]$action_id == sel[[1]]$action_id[3])
row.names(dat) <- NULL
print(c('task name 1', dat[[1]]$task_name))
print(c('task name 2', dat[[2]]$task_name))
print(c('task name 3', dat[[3]]$task_name))
print(c('action id 1', dat[[1]]$action_id))
print(c('action id 2', dat[[2]]$action_id))
print(c('action id 3', dat[[3]]$action_id))
# create save path
dir.create(file.path(paste0("result/", task_type, "/user", user_num, "/", loss_type, "/N", N)), showWarnings = FALSE, recursive = TRUE)
dir.create(file.path("temp"), showWarnings = FALSE)
save_path <- paste0("result/", task_type, "/user", user_num, "/", loss_type, "/N", N, "/", model_type, "_N", N, "_", "result", rate,"_user", user[[u]], ".csv")
if(task_type=="test_task"){
dat <- do.call(rbind, dat) %>%
mutate(index = as.numeric(as.factor(id))) %>%
rename(true_strategy = task_name) %>%
mutate(
true_strategy = factor(
#true_strategy, levels = 0:3,
true_strategy, levels = 0:2,
labels = strategies
),
q_type = case_when(
gt %in% c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 22, 23, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 58, 59, 64, 65, 68, 69, 70, 71, 72, 73, 74) ~ "put_fridge",
gt %in% c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 25, 29,30, 31, 32, 33, 34, 37, 38, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57) ~ "put_dishwasher",
gt %in% c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45) ~ "read_book",
)
)
}
if(task_type=="new_test_task"){
dat <- do.call(rbind, dat) %>%
mutate(index = as.numeric(as.factor(id))) %>%
rename(true_strategy = task_name) %>%
mutate(
true_strategy = factor(
true_strategy, levels = 0:2,
labels = strategies
),
q_type = case_when(
# new_test_set
gt %in% c(1, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 19, 20, 22, 23, 25, 29, 30, 31, 32, 33, 34, 35, 40, 42, 43, 44, 46, 47, 52, 53, 55, 56, 58, 59, 60, 64, 65, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78) ~ "put_fridge",
gt %in% c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74) ~ "put_dishwasher",
gt %in% c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 75, 76, 77, 78) ~ "read_book",
)
)
}
#print(nrow(dat))
#print(dat)
dat_obs <- dat %>% filter(assumed_strategy == strategies[[i]])
N <- nrow(dat_obs)
print(c("N: ", N))
q <- dat_obs$gt
true_strategy <- dat_obs$true_strategy
K <- length(unique(dat$assumed_strategy))
I <- 79
P_q_S <- array(dim = c(N, I, K))
for (n in 1:N) {
P_q_S[n, , ] <- dat %>%
filter(index == n) %>%
select(matches("^act[[:digit:]]+$")) %>%
as.matrix() %>%
t()
for (k in 1:K) {
# normalize probabilities
P_q_S[n, , k] <- P_q_S[n, , k] / sum(P_q_S[n, , k])
}
}
mod <- cmdstan_model(paste0(getwd(),"/strategy_inference_model.stan"))
if (rate=="_0"){
sub <- integer(0)
} else {
sub <- which(true_strategy == "put_fridge")
}
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
fit_put_fridge <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),"/temp"))
print(fit_put_fridge$summary(NULL, c("mean","sd")))
if (rate=="_0"){
sub <- integer(0)
} else {
sub <- which(true_strategy == "put_dishwasher")
}
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
fit_put_dishwasher <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),"/temp"))
print(fit_put_dishwasher$summary(NULL, c("mean","sd")))
# read_book strategy (should favor index 3)
if (rate=="_0"){
sub <- integer(0)
} else {
sub <- which(true_strategy == "read_book")
}
sdata <- list(N = length(sub), K = K, I = I, q = q[sub], P_q_S = P_q_S[sub, , ])
fit_read_book <- mod$sample(data = sdata, refresh=0, output_dir=paste0(getwd(),"/temp"))
print(fit_read_book$summary(NULL, c("mean","sd")))
# save csv
df <-rbind(fit_put_fridge$summary(), fit_put_dishwasher$summary(), fit_read_book$summary())
write.csv(df,file=save_path,quote=FALSE)
}
}

View file

@ -0,0 +1,203 @@
import os
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from torch.nn.modules.rnn import RNNCellBase
def to_cpu(list_of_tensor):
if isinstance(list_of_tensor[0], list):
list_list_of_tensor = list_of_tensor
list_of_tensor = [to_cpu(list_of_tensor)
for list_of_tensor in list_list_of_tensor]
else:
list_of_tensor = [tensor.cpu() for tensor in list_of_tensor]
return list_of_tensor
def average_over_list(l):
return sum(l) / len(l)
def _LayerNormGRUCell(input, hidden, w_ih, w_hh, ln, b_ih=None, b_hh=None):
gi = F.linear(input, w_ih, b_ih)
gh = F.linear(hidden, w_hh, b_hh)
i_r, i_i, i_n = gi.chunk(3, 1)
h_r, h_i, h_n = gh.chunk(3, 1)
# use layernorm here
resetgate = torch.sigmoid(ln['resetgate'](i_r + h_r))
inputgate = torch.sigmoid(ln['inputgate'](i_i + h_i))
newgate = torch.tanh(ln['newgate'](i_n + resetgate * h_n))
hy = newgate + inputgate * (hidden - newgate)
return hy
class CombinedEmbedding(nn.Module):
def __init__(self, pretrained_embedding, embedding):
super(CombinedEmbedding, self).__init__()
self.pretrained_embedding = pretrained_embedding
self.embedding = embedding
self.pivot = pretrained_embedding.num_embeddings
def forward(self, input):
outputs = []
mask = input < self.pivot
outputs.append(self.pretrained_embedding(torch.clamp(input, 0, self.pivot-1)) * mask.unsqueeze(1).float())
mask = input >= self.pivot
outputs.append(self.embedding(torch.clamp(input, self.pivot) - self.pivot) * mask.unsqueeze(1).float())
return sum(outputs)
class writer_helper(object):
def __init__(self, writer):
self.writer = writer
self.all_steps = {}
def get_step(self, tag):
if tag not in self.all_steps.keys():
self.all_steps.update({tag: 0})
step = self.all_steps[tag]
self.all_steps[tag] += 1
return step
def scalar_summary(self, tag, value, step=None):
if step is None:
step = self.get_step(tag)
self.writer.add_scalar(tag, value, step)
def text_summary(self, tag, value, step=None):
if step is None:
step = self.get_step(tag)
self.writer.add_text(tag, value, step)
class Constant():
def __init__(self, v):
self.v = v
def update(self):
pass
class LinearStep():
def __init__(self, max, min, steps):
self.steps = float(steps)
self.max = max
self.min = min
self.cur_step = 0
self.v = self.max
def update(self):
v = max(self.max - (self.max - self.min) *
self.cur_step / self.steps, self.min)
self.cur_step += 1
self.v = v
class fc_block(nn.Module):
def __init__(self, in_channels, out_channels, norm, activation_fn):
super(fc_block, self).__init__()
block = nn.Sequential()
block.add_module('linear', nn.Linear(in_channels, out_channels))
if norm:
block.add_module('batchnorm', nn.BatchNorm1d(out_channels))
if activation_fn is not None:
block.add_module('activation', activation_fn())
self.block = block
def forward(self, x):
return self.block(x)
class conv_block(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride,
norm,
activation_fn):
super(conv_block, self).__init__()
block = nn.Sequential()
block.add_module(
'conv',
nn.Conv2d(
in_channels,
out_channels,
kernel_size,
stride))
if norm:
block.add_module('batchnorm', nn.BatchNorm2d(out_channels))
if activation_fn is not None:
block.add_module('activation', activation_fn())
self.block = block
def forward(self, x):
return self.block(x)
def get_conv_output_shape(shape, block):
B = 1
input = torch.rand(B, *shape)
output = block(input)
n_size = output.data.view(B, -1).size(1)
return n_size
class Flatten(nn.Module):
def forward(self, input):
return input.view(input.size(0), -1)
def BHWC_to_BCHW(tensor):
tensor = torch.transpose(tensor, 1, 3) # BCWH
tensor = torch.transpose(tensor, 2, 3) # BCHW
return tensor
def LCS(X, Y):
# find the length of the strings
m = len(X)
n = len(Y)
# declaring the array for storing the dp values
L = [[None] * (n + 1) for i in range(m + 1)]
longest_L = [[[]] * (n + 1) for i in range(m + 1)]
longest = 0
lcs_set = []
for i in range(m + 1):
for j in range(n + 1):
if i == 0 or j == 0:
L[i][j] = 0
longest_L[i][j] = []
elif X[i - 1] == Y[j - 1]:
L[i][j] = L[i - 1][j - 1] + 1
longest_L[i][j] = longest_L[i - 1][j - 1] + [X[i - 1]]
if L[i][j] > longest:
lcs_set = []
lcs_set.append(longest_L[i][j])
longest = L[i][j]
elif L[i][j] == longest and longest != 0:
lcs_set.append(longest_L[i][j])
else:
if L[i - 1][j] > L[i][j - 1]:
L[i][j] = L[i - 1][j]
longest_L[i][j] = longest_L[i - 1][j]
else:
L[i][j] = L[i][j - 1]
longest_L[i][j] = longest_L[i][j - 1]
if len(lcs_set) > 0:
return lcs_set[0]
else:
return lcs_set

Some files were not shown because too many files have changed in this diff Show more