InferringIntention/watch_and_help/watch_strategy_full/helper.py
2024-03-24 23:42:27 +01:00

203 lines
5.7 KiB
Python

import os
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from torch.nn.modules.rnn import RNNCellBase
def to_cpu(list_of_tensor):
if isinstance(list_of_tensor[0], list):
list_list_of_tensor = list_of_tensor
list_of_tensor = [to_cpu(list_of_tensor)
for list_of_tensor in list_list_of_tensor]
else:
list_of_tensor = [tensor.cpu() for tensor in list_of_tensor]
return list_of_tensor
def average_over_list(l):
return sum(l) / len(l)
def _LayerNormGRUCell(input, hidden, w_ih, w_hh, ln, b_ih=None, b_hh=None):
gi = F.linear(input, w_ih, b_ih)
gh = F.linear(hidden, w_hh, b_hh)
i_r, i_i, i_n = gi.chunk(3, 1)
h_r, h_i, h_n = gh.chunk(3, 1)
# use layernorm here
resetgate = torch.sigmoid(ln['resetgate'](i_r + h_r))
inputgate = torch.sigmoid(ln['inputgate'](i_i + h_i))
newgate = torch.tanh(ln['newgate'](i_n + resetgate * h_n))
hy = newgate + inputgate * (hidden - newgate)
return hy
class CombinedEmbedding(nn.Module):
def __init__(self, pretrained_embedding, embedding):
super(CombinedEmbedding, self).__init__()
self.pretrained_embedding = pretrained_embedding
self.embedding = embedding
self.pivot = pretrained_embedding.num_embeddings
def forward(self, input):
outputs = []
mask = input < self.pivot
outputs.append(self.pretrained_embedding(torch.clamp(input, 0, self.pivot-1)) * mask.unsqueeze(1).float())
mask = input >= self.pivot
outputs.append(self.embedding(torch.clamp(input, self.pivot) - self.pivot) * mask.unsqueeze(1).float())
return sum(outputs)
class writer_helper(object):
def __init__(self, writer):
self.writer = writer
self.all_steps = {}
def get_step(self, tag):
if tag not in self.all_steps.keys():
self.all_steps.update({tag: 0})
step = self.all_steps[tag]
self.all_steps[tag] += 1
return step
def scalar_summary(self, tag, value, step=None):
if step is None:
step = self.get_step(tag)
self.writer.add_scalar(tag, value, step)
def text_summary(self, tag, value, step=None):
if step is None:
step = self.get_step(tag)
self.writer.add_text(tag, value, step)
class Constant():
def __init__(self, v):
self.v = v
def update(self):
pass
class LinearStep():
def __init__(self, max, min, steps):
self.steps = float(steps)
self.max = max
self.min = min
self.cur_step = 0
self.v = self.max
def update(self):
v = max(self.max - (self.max - self.min) *
self.cur_step / self.steps, self.min)
self.cur_step += 1
self.v = v
class fc_block(nn.Module):
def __init__(self, in_channels, out_channels, norm, activation_fn):
super(fc_block, self).__init__()
block = nn.Sequential()
block.add_module('linear', nn.Linear(in_channels, out_channels))
if norm:
block.add_module('batchnorm', nn.BatchNorm1d(out_channels))
if activation_fn is not None:
block.add_module('activation', activation_fn())
self.block = block
def forward(self, x):
return self.block(x)
class conv_block(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride,
norm,
activation_fn):
super(conv_block, self).__init__()
block = nn.Sequential()
block.add_module(
'conv',
nn.Conv2d(
in_channels,
out_channels,
kernel_size,
stride))
if norm:
block.add_module('batchnorm', nn.BatchNorm2d(out_channels))
if activation_fn is not None:
block.add_module('activation', activation_fn())
self.block = block
def forward(self, x):
return self.block(x)
def get_conv_output_shape(shape, block):
B = 1
input = torch.rand(B, *shape)
output = block(input)
n_size = output.data.view(B, -1).size(1)
return n_size
class Flatten(nn.Module):
def forward(self, input):
return input.view(input.size(0), -1)
def BHWC_to_BCHW(tensor):
tensor = torch.transpose(tensor, 1, 3) # BCWH
tensor = torch.transpose(tensor, 2, 3) # BCHW
return tensor
def LCS(X, Y):
# find the length of the strings
m = len(X)
n = len(Y)
# declaring the array for storing the dp values
L = [[None] * (n + 1) for i in range(m + 1)]
longest_L = [[[]] * (n + 1) for i in range(m + 1)]
longest = 0
lcs_set = []
for i in range(m + 1):
for j in range(n + 1):
if i == 0 or j == 0:
L[i][j] = 0
longest_L[i][j] = []
elif X[i - 1] == Y[j - 1]:
L[i][j] = L[i - 1][j - 1] + 1
longest_L[i][j] = longest_L[i - 1][j - 1] + [X[i - 1]]
if L[i][j] > longest:
lcs_set = []
lcs_set.append(longest_L[i][j])
longest = L[i][j]
elif L[i][j] == longest and longest != 0:
lcs_set.append(longest_L[i][j])
else:
if L[i - 1][j] > L[i][j - 1]:
L[i][j] = L[i - 1][j]
longest_L[i][j] = longest_L[i - 1][j]
else:
L[i][j] = L[i][j - 1]
longest_L[i][j] = longest_L[i][j - 1]
if len(lcs_set) > 0:
return lcs_set[0]
else:
return lcs_set