update README
This commit is contained in:
parent
83b04e2133
commit
e33a28f702
3 changed files with 64 additions and 70 deletions
|
@ -1,69 +0,0 @@
|
||||||
# Keyboard And Mouse Interactive Dataset
|
|
||||||
|
|
||||||
|
|
||||||
# Neural Network
|
|
||||||
|
|
||||||
## Requirements
|
|
||||||
The code is test in Ubuntu 20.04.
|
|
||||||
|
|
||||||
pytorch 1.11.0
|
|
||||||
matplotlib 3.3.2
|
|
||||||
pickle 4.0
|
|
||||||
pandas 1.4.3
|
|
||||||
|
|
||||||
## Train
|
|
||||||
|
|
||||||
Set training parameters in train.sh
|
|
||||||
|
|
||||||
Run `sh train.sh` to train the model
|
|
||||||
|
|
||||||
|
|
||||||
## Test
|
|
||||||
|
|
||||||
Run `sh test.sh` to run test on trained model
|
|
||||||
|
|
||||||
Predictions are saved under `prediction/task$i$/`
|
|
||||||
|
|
||||||
|
|
||||||
# Bayesian Inference
|
|
||||||
|
|
||||||
## Requirements
|
|
||||||
R 4.2.1
|
|
||||||
RStan [](https://mc-stan.org/users/interfaces/rstan.html)
|
|
||||||
|
|
||||||
|
|
||||||
Run `sh sampler_user.sh` to split prediction to 10% to 90%
|
|
||||||
|
|
||||||
Run `Rscript stan/strategy_inference_test.R` to get results of intention prediction for all users
|
|
||||||
Run `sh stan/plot_user.sh` to plot the bar chart for user intention prediction results of all action sequences
|
|
||||||
|
|
||||||
Run `Rscript stan/strategy_inference_test_full_length.R` to get results of intention prediction (0% to 100%) for all users
|
|
||||||
Run `sh stan/plot_user_length_10_steps.sh` to plot the bar chart for user intention prediction results (0% to 100%) of all action sequences
|
|
||||||
|
|
||||||
Run `sh sampler_single_act.sh` to get the predictions for each individual action sequence.
|
|
||||||
Run `Rscript stan/strategy_inference_test_all_individual_act.R` to get all action sequences (0% to 100%) of all users for intention prediction
|
|
||||||
Run `sh plot_user_all_individual.sh` to plot the bar chart for user intention prediction results of all action sequences
|
|
||||||
Run `sh plot_user_length_10_steps_all_individual.sh` to plot the user intention prediction results (0% to 100%) of all action sequences
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Set training and test parameters in train.sh and test.sh
|
|
||||||
|
|
||||||
Run sh train.sh to train the model.
|
|
||||||
|
|
||||||
Run sh test.sh to run test on trained model.
|
|
||||||
Predictions are saved under prediction/task$i$/
|
|
||||||
|
|
||||||
Run sh sampler_user.sh to split prediction to 10% to 90%
|
|
||||||
|
|
||||||
Run stan/strategy_inference_test.R to get results of intention prediction for all users
|
|
||||||
Run stan/plot_user.py to plot the bar chart for user intention prediction results of all action sequences
|
|
||||||
|
|
||||||
Run stan/strategy_inference_test_full_length.R to get results of intention prediction (0% to 100%) for all users
|
|
||||||
Run stan/plot_user_length_10_users.py to plot the bar chart for user intention prediction results (0% to 100%) of all action sequences
|
|
||||||
|
|
||||||
|
|
||||||
Run stan/strategy_inference_test_all_individual_act.R to get all action sequences (0% to 100%) of all users for intention prediction
|
|
||||||
Run stan/plot_user_all_individual.py to plot the bar chart for user intention prediction results of all action sequences
|
|
||||||
Run stan/plot_user_length_10_steps_all_individual.py to plot the user intention prediction results (0% to 100%) of all action sequences
|
|
63
keyboard_and_mouse/README.md
Normal file
63
keyboard_and_mouse/README.md
Normal file
|
@ -0,0 +1,63 @@
|
||||||
|
# Keyboard And Mouse Interactive Dataset
|
||||||
|
|
||||||
|
# Neural Network
|
||||||
|
|
||||||
|
## Train
|
||||||
|
|
||||||
|
Set training parameters in train.sh
|
||||||
|
|
||||||
|
Run `sh train.sh` to train the model
|
||||||
|
|
||||||
|
|
||||||
|
## Test
|
||||||
|
|
||||||
|
Run `sh test.sh` to run test on trained model
|
||||||
|
|
||||||
|
Predictions are saved under `prediction/task$i$/`
|
||||||
|
|
||||||
|
|
||||||
|
# Split Prediction
|
||||||
|
|
||||||
|
Run `sh sampler_user.sh` to split prediction to 10% to 90%
|
||||||
|
|
||||||
|
Run `sh sampler_single_act.sh` to split prediction individual action sequences.
|
||||||
|
|
||||||
|
|
||||||
|
# Bayesian Inference
|
||||||
|
|
||||||
|
|
||||||
|
Run inference to get results of intention prediction for all users and plot results
|
||||||
|
```
|
||||||
|
cd stan
|
||||||
|
Rscript strategy_inference_test.R
|
||||||
|
sh plot_user.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
Run inference to get results of intention prediction (0% to 100%) for all users and plot results
|
||||||
|
|
||||||
|
```
|
||||||
|
Rscript strategy_inference_test_full_length.R
|
||||||
|
sh plot_user_length_10_steps.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
Run inference to get all action sequences (0% to 100%) of all users for intention prediction
|
||||||
|
|
||||||
|
```
|
||||||
|
Rscript strategy_inference_test_all_individual_act.R
|
||||||
|
```
|
||||||
|
|
||||||
|
Plot results of user intention prediction of all action sequences
|
||||||
|
|
||||||
|
```
|
||||||
|
sh plot_user_all_individual.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
Plot the user intention prediction results (0% to 100%) of all action sequences
|
||||||
|
|
||||||
|
```
|
||||||
|
sh plot_user_length_10_steps_all_individual.sh
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -2,7 +2,7 @@
|
||||||
|
|
||||||
Codes to reproduce results on WAH dataset[^1]
|
Codes to reproduce results on WAH dataset[^1]
|
||||||
|
|
||||||
[^1]: Modified based on WAH train and test codes (https://github.com/xavierpuigf/watch_and_help)[https://github.com/xavierpuigf/watch_and_help].
|
[^1]: Modified based on WAH train and test codes, (see WAH)[https://github.com/xavierpuigf/watch_and_help]
|
||||||
|
|
||||||
## Data
|
## Data
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue