95 lines
3.1 KiB
Python
95 lines
3.1 KiB
Python
from src.models.discriminative_model import DiscriminativeModel
|
|
from src.models.generative_model import GenerativeModel
|
|
from src.data_modules.dvd_data import DVDData
|
|
from src.data_modules.simmc2_data import Simmc2Data
|
|
from pytorch_lightning import Trainer
|
|
import pytorch_lightning as pl
|
|
from pytorch_lightning.loggers import WandbLogger
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.callbacks.lr_monitor import LearningRateMonitor
|
|
import wandb
|
|
from config.config import read_default_config, read_config, update_nested_dicts
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser(description='Train script for OLViT')
|
|
|
|
parser.add_argument(
|
|
'--cfg_path',
|
|
default='config/dvd.json',
|
|
type=str,
|
|
help='Path to the config file of the selected checkpoint')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
wandb.finish()
|
|
args = parser.parse_args()
|
|
# read the default conifg and update the values with the experiment specific config
|
|
config = read_default_config()
|
|
experiment_config = read_config(args.cfg_path)
|
|
config = update_nested_dicts(old_dict=config, update_dict=experiment_config)
|
|
|
|
available_models = {
|
|
'discriminative': DiscriminativeModel,
|
|
'generative': GenerativeModel
|
|
}
|
|
data_modules = {
|
|
'dvd': DVDData,
|
|
'simmc2': Simmc2Data,
|
|
}
|
|
|
|
monitor_score = {
|
|
'discriminative': 'val_acc',
|
|
'generative': 'bleu4'
|
|
}
|
|
|
|
checkpoint_cb = pl.callbacks.ModelCheckpoint(
|
|
monitor=monitor_score[config['model']['model_type']], mode="max",
|
|
save_top_k=1,
|
|
dirpath=config["checkpoint"]["checkpoint_folder"],
|
|
filename=config["checkpoint"]["checkpoint_file_name"],
|
|
every_n_epochs=1
|
|
)
|
|
|
|
lr_monitor_cb = LearningRateMonitor(
|
|
logging_interval='step'
|
|
)
|
|
|
|
callbacks = []
|
|
callbacks.append(checkpoint_cb)
|
|
callbacks.append(lr_monitor_cb)
|
|
|
|
wandb_logger = WandbLogger(
|
|
offline=True,
|
|
entity=config['wandb']['entity'],
|
|
name=config['wandb']['name'],
|
|
group=config['wandb']['group'],
|
|
tags=config['wandb']['tags'],
|
|
project=config['wandb']['project'],
|
|
config=config
|
|
)
|
|
|
|
if config['training']['seed'] != None:
|
|
pl.seed_everything(config['training']['seed'])
|
|
|
|
trainer = Trainer(
|
|
logger=wandb_logger,
|
|
# detect_anomaly=True,
|
|
accelerator='gpu',
|
|
devices=[0],
|
|
fast_dev_run=False,
|
|
max_epochs=config['training']['epochs'],
|
|
check_val_every_n_epoch=1,
|
|
log_every_n_steps=1,
|
|
strategy=pl.strategies.ddp.DDPStrategy(find_unused_parameters=False),
|
|
accumulate_grad_batches=config['training']['accumulate_grad_batches'],
|
|
precision=32,
|
|
callbacks=callbacks
|
|
)
|
|
data = data_modules[config['model']['dataset']](config=config)
|
|
|
|
if 'output_path' in config['checkpoint'].keys():
|
|
model = available_models[config['model']['model_type']](config=config, output_path=config['checkpoint']['output_path'])
|
|
else:
|
|
model = available_models[config['model']['model_type']](config=config)
|
|
|
|
trainer.fit(model, data)
|