64 lines
No EOL
2.4 KiB
Markdown
64 lines
No EOL
2.4 KiB
Markdown
# SalChartQA: Question-driven Saliency on Information Visualisations
|
|
|
|
[![Identifier](https://img.shields.io/badge/doi-10.18419%2Fdarus--3884-d45815.svg)](https://doi.org/10.18419/darus-3884)
|
|
|
|
*Yao Wang, Weitian Wang, Abdullah Abdelhafez, Mayar Elfares, Zhiming Hu, Mihai Bâce, and Andreas Bulling*
|
|
|
|
Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI 2024)
|
|
|
|
|
|
```
|
|
$Root Directory
|
|
│
|
|
│─ README.md —— this file
|
|
│
|
|
|─ Code —— Source code of the VisSalFormer model to predict question-driven saliency
|
|
│ │
|
|
│ |─ environment.yml —— conda environment
|
|
│ │
|
|
│ |─ env.py —— python envorinment $TORCH_HOME and $TRANSFORMERS_CACHE
|
|
│ │
|
|
│ │─ dataset_new.py —— dataloader for SalChartQA
|
|
│ │
|
|
│ │─ evaluation.py —— evaluation script to load VisSalFormer weights and make predictions
|
|
│ │
|
|
│ │─ evaluation.sh —— bash script to run evaluation.py
|
|
│ │
|
|
│ │─ model_swin.py —— definition of the VisSalFormer model
|
|
│ │
|
|
│ │─ tokenizer_bert.py —— tokenizer of Bert
|
|
│ │
|
|
│ └─ VisSalFormer_weights.tar —— weights of VisSalFormer, download at [darus-3884](https://doi.org/10.18419/darus-3884)
|
|
│
|
|
└─ SalChartQA.zip —— The SalChartQA dataset, download at [darus-3884](https://doi.org/10.18419/darus-3884)
|
|
│
|
|
│─ fixationByVis —— BubbleView data (mouse clicks) of AMT workers
|
|
│
|
|
│─ image_questions.json —— visualisation-question pairs
|
|
│
|
|
│─ raw_img —— original visualisations from the ChartQA dataset
|
|
│
|
|
│─ saliency_all —— saliency maps from all AMT workers
|
|
│
|
|
│─ saliency_ans —— saliency maps aggretated by all AMT workers who either answered a question correctly or wrongly
|
|
│
|
|
└─ unified_approved.csv —— responses from AMT workers
|
|
|
|
```
|
|
|
|
If you think our work is useful to you, please consider citing our paper as:
|
|
|
|
```
|
|
@inproceedings{wang24_chi,
|
|
title = {SalChartQA: Question-driven Saliency on Information Visualisations},
|
|
author = {Wang, Yao and Wang, Weitian and Abdelhafez, Abdullah and Elfares, Mayar and Hu, Zhiming and B{\^a}ce, Mihai and Bulling, Andreas},
|
|
year = {2024},
|
|
pages = {1--14},
|
|
booktitle = {Proc. ACM SIGCHI Conference on Human Factors in Computing Systems (CHI)},
|
|
doi = {10.1145/3613904.3642942}
|
|
}
|
|
|
|
```
|
|
|
|
|
|
contact: yao.wang@vis.uni-stuttgart.de |