gazesim/code/geom.py

288 lines
10 KiB
Python
Raw Normal View History

2016-03-09 19:52:35 +01:00
from __future__ import division
import numpy as np
from random import sample
def_fov = np.pi * 2./3
def generatePoints(n, min_xyz, max_xyz, grid=False, randomZ=True, randFixedZ=False, depth=None, offset=0.5, xoffset=0, yoffset=0, zoffset=0):
if randFixedZ: # means all points have the same z but z is chosen at random between max and min z
z = min_xyz[2] + np.random.random() * (max_xyz[2] - min_xyz[2])
else: # same depth
if not isinstance(depth, list) and not depth: # depth is exactly the middle of min and max z
z = min_xyz[2] + (max_xyz[2] - min_xyz[2]) / 2
else:
z = depth
if not grid: # compute randomly
xr, yr, zr = max_xyz[0] - min_xyz[0], max_xyz[1] - min_xyz[1], max_xyz[2] - min_xyz[2]
xr = np.random.rand(1, n)[0] * xr + min_xyz[0]
yr = np.random.rand(1, n)[0] * yr + min_xyz[1]
if randomZ:
zr = np.random.rand(1, n)[0] * zr + min_xyz[2]
else:
zr = np.ones((1, n))[0] * z
return zip(xr, yr, zr)
else: # compute points on a mXm grid when m = sqrt(n)
m = int(np.sqrt(n))
gwx = (max_xyz[0] - min_xyz[0]) / m
gwy = (max_xyz[1] - min_xyz[1]) / m
zr = max_xyz[2] - min_xyz[2]
if randomZ:
return [(min_xyz[0] + (i+offset) * gwx + xoffset,
min_xyz[1] + (j+offset) * gwy + yoffset,
np.random.random() * zr + min_xyz[2] + zoffset) for i in xrange(m) for j in xrange(m)]
else:
if not isinstance(depth, list):
ret = [(min_xyz[0] + (i+offset) * gwx + xoffset, # offset .5
min_xyz[1] + (j+offset) * gwy + yoffset, # offset .5
z + zoffset) for i in xrange(m) for j in xrange(m)]
# return ret
return sample(ret, len(ret)) # this shuffles the points
else:
ret = []
for dz in depth:
ret.extend([(min_xyz[0] + (i+offset) * gwx + xoffset,
min_xyz[1] + (j+offset) * gwy + yoffset,
dz + zoffset) for i in xrange(m) for j in xrange(m)])
# return ret
return sample(ret, len(ret)) # this shuffles the points
def getSphericalCoords(x, y, z):
'''
According to our coordinate system, this returns the
spherical coordinates of a 3D vector.
A vector originating from zero and pointing to the positive Z direction (no X or Y deviation)
will correspond to (teta, phi) = (0, 90) (in degrees)
The coordinate system we are using is similar to https://en.wikipedia.org/wiki/File:3D_Spherical_2.svg
Y
|
|
|______X
/
/
/
Z
with a CounterClockwise rotation of the axis vectors
'''
r = np.sqrt(x*x + y*y + z*z)
teta = np.arctan(x/z)
phi = np.arccos(y/r)
return teta, phi, r
def getAngularDiff(T, E, C):
'''
T is the target point
E is the estimated target
C is camera center
Returns angular error
(using law of cosines: http://mathcentral.uregina.ca/QQ/database/QQ.09.07/h/lucy1.html)
'''
t = (E - C).mag
e = (C - T).mag
c = (T - E).mag
return np.degrees(np.arccos((e*e + t*t - c*c)/(2*e*t)))
def getRotationMatrixFromAngles(r):
'''
Returns a rotation matrix by combining elemental rotations
around x, y', and z''
It also appends a zero row, so the end result looks like:
[R_11 R_12 R_13]
[R_11 R_12 R_13]
[R_11 R_12 R_13]
[0 0 0 ]
'''
cos = map(np.cos, r)
sin = map(np.sin, r)
Rx = np.array([
[1, 0, 0],
[0, cos[0], -sin[0]],
[0, sin[0], cos[0]]])
Ry = np.array([
[ cos[1], 0, sin[1]],
[ 0 , 1, 0],
[-sin[1], 0, cos[1]]])
Rz = np.array([
[cos[2], -sin[2], 0],
[sin[2], cos[2], 0],
[0 , 0, 1]])
R = Rz.dot(Ry.dot(Rx))
return np.concatenate((R, [[0, 0, 0]]))
# import cv2
# def getRotationMatrix(a, b):
# y = a[1] - b[1]
# z = a[2] - b[2]
# x = a[0] - b[0]
# rotx = np.arctan(y/z)
# roty = np.arctan(x*np.cos(rotx)/z)
# rotz = np.arctan(np.cos(rotx)/(np.sin(rotx)*np.sin(roty)))
# return cv2.Rodrigues(np.array([rotx, roty, rotz]))[0]
def getRotationMatrix(a, b):
'''
Computes the rotation matrix that maps unit vector a to unit vector b
It also augments a zero row, so the end result looks like:
[R_11 R_12 R_13]
[R_11 R_12 R_13]
[R_11 R_12 R_13]
[0 0 0 ]
(simply slice the output like R = output[:3] to get only the rotation matrix)
based on the solution here:
https://math.stackexchange.com/questions/180418/calculate-rotation-matrix-to-align-vector-a-to-vector-b-in-3d
'''
a, b = np.array(a), np.array(b)
v = np.cross(a, b, axis=0)
s = np.linalg.norm(v) # sine of angle
c = a.dot(b) # cosine of angle
vx = np.array([
[0 , -v[2], v[1]],
[v[2] , 0, -v[0]],
[-v[1], v[0], 0]])
if s == 0: # a == b
return np.concatenate((np.eye(3), [[0, 0, 0]]))
if c == 1:
return np.concatenate((np.eye(3) + vx, [[0, 0, 0]]))
return np.concatenate((np.eye(3) + vx + vx.dot(vx)*((1-c)/s/s), [[0, 0, 0]]))
class PinholeCamera:
'''
Models a basic Pinhole Camera with 9 degrees of freedom
'''
# Intrinsic parameters
f = 1 # focal length
p = (0, 0) # position of principal point in the image plane
# Extrinsic parameters
# this rotation corresponds to a camera setting pointing towards (0, 0, -1)
r = (0, 0, 0) # rotations in x, y', and z'' planes respectively
t = (0, 0, 0) # camera center translation w.r.t world coordinate system (with no rotation)
#
# Using the above parameters we can construct the camera matrix
#
# [f 0 p.x 0]
# P = K[R|t] where K = [0 f p.y 0] is the camera calibration matrix (full projection matrix)
# [0 0 1 0]
#
# and thus we have x = PX for every point X in the word coordinate system
# and its corresponding projection in the camera image plane x
# NOTE: points are assumed to be represented by homogeneous vectors
#
# Other parameters
label = ''
direction = (0, 0, 1) # camera direction
fov = def_fov # field of view (both horizontal and vertical)
image_width = 2*f*np.tan(fov/2.)
################################################
def __init__(self, label, f = 1, r = (0, 0, 0), t = (0, 0, 0), direction = (0, 0, 1), fov=def_fov):
self.label = label
self.f = f
self.r = r
self.direction = direction
self.t = t
self.setFOV(fov)
self.recomputeCameraMatrix(True, True)
def recomputeCameraMatrix(self, changedRotation, changedIntrinsic):
if changedRotation:
# # Computing rotation matrix using elemental rotations
self.R = getRotationMatrixFromAngles(self.r)
# by default if rotation is 0 then camera optical axis points to positive Z
self.direction = np.array([0, 0, 1, 0]).dot(self.R)
# Computing the extrinsic matrix
_t = -self.R.dot(np.array(self.t)) # t = -RC
self.Rt = np.concatenate((self.R, np.array([[_t[0], _t[1], _t[2], 1]]).T), axis=1)
# instead of the above, we could also represent translation matrix as [I|-C] and
# [R -RC]
# then compute Rt as R[I|-C] = [0 1] [R] [-RC]
# but we're basically do the same thing by concatenating [0] with [ 1]
if changedIntrinsic:
# Computing intrinsic matrix
f, px, py = self.f, self.p[0], self.p[1]
self.K = np.array([
[f, 0, px, 0],
[0, f, py, 0],
[0, 0, 1, 0]])
# Full Camera Projection Matrix
self.P = self.K.dot(self.Rt)
################################################
## Intrinsic parameter setters
def setF(self, f, auto_adjust = True):
self.f = f
if auto_adjust:
self.setFOV(self.fov)
self.recomputeCameraMatrix(False, True)
def setP(self, p, auto_adjust = True):
self.p = p
if auto_adjust:
self.recomputeCameraMatrix(False, True)
def setFOV(self, fov):
self.fov = fov
self.image_width = 2*self.f*np.tan(fov/2.)
################################################
## Extrinsic parameter setters
def setT(self, t, auto_adjust = True):
self.t = t
if auto_adjust:
self.recomputeCameraMatrix(False, False)
def setR(self, r, auto_adjust = True):
self.r = r
if auto_adjust:
self.recomputeCameraMatrix(True, False)
################################################
def project(self, p):
'''
Computes projection of a point p in world coordinate system
using its homogeneous vector coordinates [x, y, z, 1]
'''
if len(p) < 4: p = (p[0], p[1], p[2], 1)
projection = self.P.dot(np.array(p))
# dividing by the Z value to get a 2D point from homogeneous coordinates
return np.array((projection[0], projection[1]))/projection[2]
def getNormalizedPts(self, pts):
'''
Returns normalized x and y coordinates in range [0, 1]
'''
px, py = self.p[0], self.p[1]
return map(lambda p:np.array([p[0] - px + self.image_width/2,
p[1] - py + self.image_width/2]) / self.image_width, pts)
def getDenormalizedPts(self, pts):
'''
Returns original points in the camera image coordinate plane from normalized points
'''
px, py = self.p[0], self.p[1]
offset = np.array([self.image_width/2-px, self.image_width/2-py])
return map(lambda p:(p*self.image_width)-offset, pts)
class Camera(PinholeCamera):
default_radius = 2.0
def updateShape(self):
c = v(self.t)
# Update camera center
self.center.pos = c
# Update the arrow
self.dir.pos = c
self.dir.axis = v(self.direction) * self.f
# Update image plane
self.img_plane.pos = c + self.dir.axis
self.img_plane.length = self.image_width
self.img_plane.height = self.image_width
# TODO: handle rotation of image plane