288 lines
No EOL
10 KiB
Python
288 lines
No EOL
10 KiB
Python
from __future__ import division
|
|
import numpy as np
|
|
from random import sample
|
|
|
|
def_fov = np.pi * 2./3
|
|
|
|
def generatePoints(n, min_xyz, max_xyz, grid=False, randomZ=True, randFixedZ=False, depth=None, offset=0.5, xoffset=0, yoffset=0, zoffset=0):
|
|
if randFixedZ: # means all points have the same z but z is chosen at random between max and min z
|
|
z = min_xyz[2] + np.random.random() * (max_xyz[2] - min_xyz[2])
|
|
else: # same depth
|
|
if not isinstance(depth, list) and not depth: # depth is exactly the middle of min and max z
|
|
z = min_xyz[2] + (max_xyz[2] - min_xyz[2]) / 2
|
|
else:
|
|
z = depth
|
|
if not grid: # compute randomly
|
|
xr, yr, zr = max_xyz[0] - min_xyz[0], max_xyz[1] - min_xyz[1], max_xyz[2] - min_xyz[2]
|
|
|
|
xr = np.random.rand(1, n)[0] * xr + min_xyz[0]
|
|
yr = np.random.rand(1, n)[0] * yr + min_xyz[1]
|
|
if randomZ:
|
|
zr = np.random.rand(1, n)[0] * zr + min_xyz[2]
|
|
else:
|
|
zr = np.ones((1, n))[0] * z
|
|
return zip(xr, yr, zr)
|
|
else: # compute points on a mXm grid when m = sqrt(n)
|
|
m = int(np.sqrt(n))
|
|
gwx = (max_xyz[0] - min_xyz[0]) / m
|
|
gwy = (max_xyz[1] - min_xyz[1]) / m
|
|
zr = max_xyz[2] - min_xyz[2]
|
|
if randomZ:
|
|
return [(min_xyz[0] + (i+offset) * gwx + xoffset,
|
|
min_xyz[1] + (j+offset) * gwy + yoffset,
|
|
np.random.random() * zr + min_xyz[2] + zoffset) for i in xrange(m) for j in xrange(m)]
|
|
else:
|
|
if not isinstance(depth, list):
|
|
ret = [(min_xyz[0] + (i+offset) * gwx + xoffset, # offset .5
|
|
min_xyz[1] + (j+offset) * gwy + yoffset, # offset .5
|
|
z + zoffset) for i in xrange(m) for j in xrange(m)]
|
|
# return ret
|
|
return sample(ret, len(ret)) # this shuffles the points
|
|
else:
|
|
ret = []
|
|
for dz in depth:
|
|
ret.extend([(min_xyz[0] + (i+offset) * gwx + xoffset,
|
|
min_xyz[1] + (j+offset) * gwy + yoffset,
|
|
dz + zoffset) for i in xrange(m) for j in xrange(m)])
|
|
# return ret
|
|
return sample(ret, len(ret)) # this shuffles the points
|
|
|
|
|
|
def getSphericalCoords(x, y, z):
|
|
'''
|
|
According to our coordinate system, this returns the
|
|
spherical coordinates of a 3D vector.
|
|
A vector originating from zero and pointing to the positive Z direction (no X or Y deviation)
|
|
will correspond to (teta, phi) = (0, 90) (in degrees)
|
|
The coordinate system we are using is similar to https://en.wikipedia.org/wiki/File:3D_Spherical_2.svg
|
|
|
|
Y
|
|
|
|
|
|
|
|
|______X
|
|
/
|
|
/
|
|
/
|
|
Z
|
|
|
|
with a CounterClockwise rotation of the axis vectors
|
|
'''
|
|
r = np.sqrt(x*x + y*y + z*z)
|
|
teta = np.arctan(x/z)
|
|
phi = np.arccos(y/r)
|
|
return teta, phi, r
|
|
|
|
def getAngularDiff(T, E, C):
|
|
'''
|
|
T is the target point
|
|
E is the estimated target
|
|
C is camera center
|
|
Returns angular error
|
|
|
|
(using law of cosines: http://mathcentral.uregina.ca/QQ/database/QQ.09.07/h/lucy1.html)
|
|
'''
|
|
t = (E - C).mag
|
|
e = (C - T).mag
|
|
c = (T - E).mag
|
|
return np.degrees(np.arccos((e*e + t*t - c*c)/(2*e*t)))
|
|
|
|
def getRotationMatrixFromAngles(r):
|
|
'''
|
|
Returns a rotation matrix by combining elemental rotations
|
|
around x, y', and z''
|
|
|
|
It also appends a zero row, so the end result looks like:
|
|
[R_11 R_12 R_13]
|
|
[R_11 R_12 R_13]
|
|
[R_11 R_12 R_13]
|
|
[0 0 0 ]
|
|
'''
|
|
cos = map(np.cos, r)
|
|
sin = map(np.sin, r)
|
|
Rx = np.array([
|
|
[1, 0, 0],
|
|
[0, cos[0], -sin[0]],
|
|
[0, sin[0], cos[0]]])
|
|
Ry = np.array([
|
|
[ cos[1], 0, sin[1]],
|
|
[ 0 , 1, 0],
|
|
[-sin[1], 0, cos[1]]])
|
|
Rz = np.array([
|
|
[cos[2], -sin[2], 0],
|
|
[sin[2], cos[2], 0],
|
|
[0 , 0, 1]])
|
|
R = Rz.dot(Ry.dot(Rx))
|
|
return np.concatenate((R, [[0, 0, 0]]))
|
|
|
|
# import cv2
|
|
# def getRotationMatrix(a, b):
|
|
# y = a[1] - b[1]
|
|
# z = a[2] - b[2]
|
|
# x = a[0] - b[0]
|
|
# rotx = np.arctan(y/z)
|
|
# roty = np.arctan(x*np.cos(rotx)/z)
|
|
# rotz = np.arctan(np.cos(rotx)/(np.sin(rotx)*np.sin(roty)))
|
|
# return cv2.Rodrigues(np.array([rotx, roty, rotz]))[0]
|
|
|
|
def getRotationMatrix(a, b):
|
|
'''
|
|
Computes the rotation matrix that maps unit vector a to unit vector b
|
|
|
|
It also augments a zero row, so the end result looks like:
|
|
[R_11 R_12 R_13]
|
|
[R_11 R_12 R_13]
|
|
[R_11 R_12 R_13]
|
|
[0 0 0 ]
|
|
|
|
(simply slice the output like R = output[:3] to get only the rotation matrix)
|
|
|
|
based on the solution here:
|
|
https://math.stackexchange.com/questions/180418/calculate-rotation-matrix-to-align-vector-a-to-vector-b-in-3d
|
|
'''
|
|
a, b = np.array(a), np.array(b)
|
|
v = np.cross(a, b, axis=0)
|
|
s = np.linalg.norm(v) # sine of angle
|
|
c = a.dot(b) # cosine of angle
|
|
|
|
vx = np.array([
|
|
[0 , -v[2], v[1]],
|
|
[v[2] , 0, -v[0]],
|
|
[-v[1], v[0], 0]])
|
|
|
|
if s == 0: # a == b
|
|
return np.concatenate((np.eye(3), [[0, 0, 0]]))
|
|
if c == 1:
|
|
return np.concatenate((np.eye(3) + vx, [[0, 0, 0]]))
|
|
return np.concatenate((np.eye(3) + vx + vx.dot(vx)*((1-c)/s/s), [[0, 0, 0]]))
|
|
|
|
|
|
|
|
|
|
class PinholeCamera:
|
|
'''
|
|
Models a basic Pinhole Camera with 9 degrees of freedom
|
|
'''
|
|
# Intrinsic parameters
|
|
f = 1 # focal length
|
|
p = (0, 0) # position of principal point in the image plane
|
|
# Extrinsic parameters
|
|
# this rotation corresponds to a camera setting pointing towards (0, 0, -1)
|
|
r = (0, 0, 0) # rotations in x, y', and z'' planes respectively
|
|
t = (0, 0, 0) # camera center translation w.r.t world coordinate system (with no rotation)
|
|
#
|
|
# Using the above parameters we can construct the camera matrix
|
|
#
|
|
# [f 0 p.x 0]
|
|
# P = K[R|t] where K = [0 f p.y 0] is the camera calibration matrix (full projection matrix)
|
|
# [0 0 1 0]
|
|
#
|
|
# and thus we have x = PX for every point X in the word coordinate system
|
|
# and its corresponding projection in the camera image plane x
|
|
# NOTE: points are assumed to be represented by homogeneous vectors
|
|
#
|
|
# Other parameters
|
|
label = ''
|
|
|
|
direction = (0, 0, 1) # camera direction
|
|
fov = def_fov # field of view (both horizontal and vertical)
|
|
image_width = 2*f*np.tan(fov/2.)
|
|
################################################
|
|
def __init__(self, label, f = 1, r = (0, 0, 0), t = (0, 0, 0), direction = (0, 0, 1), fov=def_fov):
|
|
self.label = label
|
|
self.f = f
|
|
self.r = r
|
|
self.direction = direction
|
|
self.t = t
|
|
self.setFOV(fov)
|
|
self.recomputeCameraMatrix(True, True)
|
|
|
|
def recomputeCameraMatrix(self, changedRotation, changedIntrinsic):
|
|
if changedRotation:
|
|
# # Computing rotation matrix using elemental rotations
|
|
self.R = getRotationMatrixFromAngles(self.r)
|
|
# by default if rotation is 0 then camera optical axis points to positive Z
|
|
self.direction = np.array([0, 0, 1, 0]).dot(self.R)
|
|
|
|
# Computing the extrinsic matrix
|
|
_t = -self.R.dot(np.array(self.t)) # t = -RC
|
|
self.Rt = np.concatenate((self.R, np.array([[_t[0], _t[1], _t[2], 1]]).T), axis=1)
|
|
# instead of the above, we could also represent translation matrix as [I|-C] and
|
|
# [R -RC]
|
|
# then compute Rt as R[I|-C] = [0 1] [R] [-RC]
|
|
# but we're basically do the same thing by concatenating [0] with [ 1]
|
|
|
|
if changedIntrinsic:
|
|
# Computing intrinsic matrix
|
|
f, px, py = self.f, self.p[0], self.p[1]
|
|
self.K = np.array([
|
|
[f, 0, px, 0],
|
|
[0, f, py, 0],
|
|
[0, 0, 1, 0]])
|
|
# Full Camera Projection Matrix
|
|
self.P = self.K.dot(self.Rt)
|
|
|
|
################################################
|
|
## Intrinsic parameter setters
|
|
def setF(self, f, auto_adjust = True):
|
|
self.f = f
|
|
if auto_adjust:
|
|
self.setFOV(self.fov)
|
|
self.recomputeCameraMatrix(False, True)
|
|
def setP(self, p, auto_adjust = True):
|
|
self.p = p
|
|
if auto_adjust:
|
|
self.recomputeCameraMatrix(False, True)
|
|
def setFOV(self, fov):
|
|
self.fov = fov
|
|
self.image_width = 2*self.f*np.tan(fov/2.)
|
|
################################################
|
|
## Extrinsic parameter setters
|
|
def setT(self, t, auto_adjust = True):
|
|
self.t = t
|
|
if auto_adjust:
|
|
self.recomputeCameraMatrix(False, False)
|
|
def setR(self, r, auto_adjust = True):
|
|
self.r = r
|
|
if auto_adjust:
|
|
self.recomputeCameraMatrix(True, False)
|
|
################################################
|
|
def project(self, p):
|
|
'''
|
|
Computes projection of a point p in world coordinate system
|
|
using its homogeneous vector coordinates [x, y, z, 1]
|
|
'''
|
|
if len(p) < 4: p = (p[0], p[1], p[2], 1)
|
|
projection = self.P.dot(np.array(p))
|
|
# dividing by the Z value to get a 2D point from homogeneous coordinates
|
|
return np.array((projection[0], projection[1]))/projection[2]
|
|
|
|
def getNormalizedPts(self, pts):
|
|
'''
|
|
Returns normalized x and y coordinates in range [0, 1]
|
|
'''
|
|
px, py = self.p[0], self.p[1]
|
|
return map(lambda p:np.array([p[0] - px + self.image_width/2,
|
|
p[1] - py + self.image_width/2]) / self.image_width, pts)
|
|
def getDenormalizedPts(self, pts):
|
|
'''
|
|
Returns original points in the camera image coordinate plane from normalized points
|
|
'''
|
|
px, py = self.p[0], self.p[1]
|
|
offset = np.array([self.image_width/2-px, self.image_width/2-py])
|
|
return map(lambda p:(p*self.image_width)-offset, pts)
|
|
|
|
class Camera(PinholeCamera):
|
|
default_radius = 2.0
|
|
|
|
def updateShape(self):
|
|
c = v(self.t)
|
|
# Update camera center
|
|
self.center.pos = c
|
|
# Update the arrow
|
|
self.dir.pos = c
|
|
self.dir.axis = v(self.direction) * self.f
|
|
# Update image plane
|
|
self.img_plane.pos = c + self.dir.axis
|
|
self.img_plane.length = self.image_width
|
|
self.img_plane.height = self.image_width
|
|
# TODO: handle rotation of image plane |