339 lines
9.8 KiB
Text
339 lines
9.8 KiB
Text
![]() |
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## This notebook creates one dataframe from all participants data\n",
|
||
|
"## It also removes 1% of the data as this is corrupted"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"%matplotlib inline\n",
|
||
|
"\n",
|
||
|
"from scipy.odr import *\n",
|
||
|
"from scipy.stats import *\n",
|
||
|
"import numpy as np\n",
|
||
|
"import pandas as pd\n",
|
||
|
"import os\n",
|
||
|
"import time\n",
|
||
|
"import matplotlib.pyplot as plt\n",
|
||
|
"import ast\n",
|
||
|
"from multiprocessing import Pool, cpu_count\n",
|
||
|
"\n",
|
||
|
"import scipy\n",
|
||
|
"\n",
|
||
|
"from IPython import display\n",
|
||
|
"from matplotlib.patches import Rectangle\n",
|
||
|
"\n",
|
||
|
"from sklearn.metrics import mean_squared_error\n",
|
||
|
"import json\n",
|
||
|
"\n",
|
||
|
"import scipy.stats as st\n",
|
||
|
"from sklearn.metrics import r2_score\n",
|
||
|
"\n",
|
||
|
"\n",
|
||
|
"from matplotlib import cm\n",
|
||
|
"from mpl_toolkits.mplot3d import axes3d\n",
|
||
|
"import matplotlib.pyplot as plt\n",
|
||
|
"\n",
|
||
|
"import copy\n",
|
||
|
"\n",
|
||
|
"from sklearn.model_selection import LeaveOneOut, LeavePOut\n",
|
||
|
"\n",
|
||
|
"from multiprocessing import Pool"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def cast_to_int(row):\n",
|
||
|
" try:\n",
|
||
|
" return np.array([a if float(a) >= 0 else 0 for a in row[2:-1]], dtype=np.uint8)\n",
|
||
|
" except Exception as e:\n",
|
||
|
" return None\n",
|
||
|
" \n",
|
||
|
"def load_csv(file):\n",
|
||
|
" temp_df = pd.read_csv(file, delimiter=\";\")\n",
|
||
|
" temp_df.Image = temp_df.Image.str.split(',')\n",
|
||
|
" temp_df.Image = temp_df.Image.apply(cast_to_int)\n",
|
||
|
" return temp_df"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 3,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"['DataStudyCollection/17_studyData.csv', 'DataStudyCollection/2_studyData.csv', 'DataStudyCollection/12_studyData.csv', 'DataStudyCollection/15_studyData.csv', 'DataStudyCollection/5_studyData.csv', 'DataStudyCollection/1_studyData.csv', 'DataStudyCollection/14_studyData.csv', 'DataStudyCollection/10_studyData.csv', 'DataStudyCollection/13_studyData.csv', 'DataStudyCollection/18_studyData.csv', 'DataStudyCollection/6_studyData.csv', 'DataStudyCollection/16_studyData.csv', 'DataStudyCollection/3_studyData.csv', 'DataStudyCollection/7_studyData.csv', 'DataStudyCollection/8_studyData.csv', 'DataStudyCollection/9_studyData.csv', 'DataStudyCollection/11_studyData.csv', 'DataStudyCollection/4_studyData.csv']\n",
|
||
|
"CPU times: user 1.86 s, sys: 1.03 s, total: 2.89 s\n",
|
||
|
"Wall time: 17.3 s\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%%time\n",
|
||
|
"pool = Pool(cpu_count() - 2)\n",
|
||
|
"data_files = [\"DataStudyCollection/%s\" % file for file in os.listdir(\"DataStudyCollection\") if file.endswith(\".csv\") and \"studyData\" in file]\n",
|
||
|
"print(data_files)\n",
|
||
|
"df_lst = pool.map(load_csv, data_files)\n",
|
||
|
"dfAll = pd.concat(df_lst)\n",
|
||
|
"pool.close()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 4,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"1010014"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 4,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"df = dfAll[dfAll.Image.notnull()]\n",
|
||
|
"len(df)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 5,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"loaded 1013841 values\n",
|
||
|
"removed 3827 values (thats 0.377%)\n",
|
||
|
"new df has size 1010014\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"print(\"loaded %s values\" % len(dfAll))\n",
|
||
|
"print(\"removed %s values (thats %s%%)\" % (len(dfAll) - len(df), round((len(dfAll) - len(df)) / len(dfAll) * 100, 3)))\n",
|
||
|
"print(\"new df has size %s\" % len(df))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 6,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"df = df.reset_index(drop=True)\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 7,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<style scoped>\n",
|
||
|
" .dataframe tbody tr th:only-of-type {\n",
|
||
|
" vertical-align: middle;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe tbody tr th {\n",
|
||
|
" vertical-align: top;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe thead th {\n",
|
||
|
" text-align: right;\n",
|
||
|
" }\n",
|
||
|
"</style>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>userID</th>\n",
|
||
|
" <th>Timestamp</th>\n",
|
||
|
" <th>Current_Task</th>\n",
|
||
|
" <th>Task_amount</th>\n",
|
||
|
" <th>TaskID</th>\n",
|
||
|
" <th>VersionID</th>\n",
|
||
|
" <th>RepetitionID</th>\n",
|
||
|
" <th>Actual_Data</th>\n",
|
||
|
" <th>Is_Pause</th>\n",
|
||
|
" <th>Image</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>0</th>\n",
|
||
|
" <td>17</td>\n",
|
||
|
" <td>1547138602677</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>34</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>False</td>\n",
|
||
|
" <td>False</td>\n",
|
||
|
" <td>[1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, ...</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>17</td>\n",
|
||
|
" <td>1547138602697</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>34</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>False</td>\n",
|
||
|
" <td>False</td>\n",
|
||
|
" <td>[1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, ...</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>17</td>\n",
|
||
|
" <td>1547138602796</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>34</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>False</td>\n",
|
||
|
" <td>False</td>\n",
|
||
|
" <td>[1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, ...</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <td>17</td>\n",
|
||
|
" <td>1547138602817</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>34</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>False</td>\n",
|
||
|
" <td>False</td>\n",
|
||
|
" <td>[1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, ...</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <td>17</td>\n",
|
||
|
" <td>1547138602863</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>34</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>False</td>\n",
|
||
|
" <td>False</td>\n",
|
||
|
" <td>[1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, ...</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" userID Timestamp Current_Task Task_amount TaskID VersionID \\\n",
|
||
|
"0 17 1547138602677 0 34 0 0 \n",
|
||
|
"1 17 1547138602697 0 34 0 0 \n",
|
||
|
"2 17 1547138602796 0 34 0 0 \n",
|
||
|
"3 17 1547138602817 0 34 0 0 \n",
|
||
|
"4 17 1547138602863 0 34 0 0 \n",
|
||
|
"\n",
|
||
|
" RepetitionID Actual_Data Is_Pause \\\n",
|
||
|
"0 0 False False \n",
|
||
|
"1 0 False False \n",
|
||
|
"2 0 False False \n",
|
||
|
"3 0 False False \n",
|
||
|
"4 0 False False \n",
|
||
|
"\n",
|
||
|
" Image \n",
|
||
|
"0 [1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, ... \n",
|
||
|
"1 [1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, ... \n",
|
||
|
"2 [1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, ... \n",
|
||
|
"3 [1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, ... \n",
|
||
|
"4 [1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, ... "
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 7,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"df.head()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 8,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"df.to_pickle(\"DataStudyCollection/AllData.pkl\")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 9,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 9,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"sorted(df.userID.unique())"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.6.7"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|