153 lines
3.7 KiB
Text
153 lines
3.7 KiB
Text
![]() |
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Filtering the data for the LSTM: removes all the rows, where we used the revert button, when the participant performed a wrong gesture\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"%matplotlib inline\n",
|
||
|
"\n",
|
||
|
"from scipy.odr import *\n",
|
||
|
"from scipy.stats import *\n",
|
||
|
"import numpy as np\n",
|
||
|
"import pandas as pd\n",
|
||
|
"import os\n",
|
||
|
"import time\n",
|
||
|
"import matplotlib.pyplot as plt\n",
|
||
|
"import ast\n",
|
||
|
"from multiprocessing import Pool, cpu_count\n",
|
||
|
"\n",
|
||
|
"import scipy\n",
|
||
|
"\n",
|
||
|
"from IPython import display\n",
|
||
|
"from matplotlib.patches import Rectangle\n",
|
||
|
"\n",
|
||
|
"from sklearn.metrics import mean_squared_error\n",
|
||
|
"import json\n",
|
||
|
"\n",
|
||
|
"import scipy.stats as st\n",
|
||
|
"from sklearn.metrics import r2_score\n",
|
||
|
"\n",
|
||
|
"\n",
|
||
|
"from matplotlib import cm\n",
|
||
|
"from mpl_toolkits.mplot3d import axes3d\n",
|
||
|
"import matplotlib.pyplot as plt\n",
|
||
|
"\n",
|
||
|
"import copy\n",
|
||
|
"\n",
|
||
|
"from sklearn.model_selection import LeaveOneOut, LeavePOut\n",
|
||
|
"\n",
|
||
|
"from multiprocessing import Pool\n",
|
||
|
"import cv2"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"dfAll = pd.read_pickle(\"DataStudyCollection/AllData.pkl\")\n",
|
||
|
"dfAll.head()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"df_actual = dfAll[(dfAll.Actual_Data == True) & (dfAll.Is_Pause == False)]\n",
|
||
|
"df_actual.head()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"print(\"all: %s, actual data: %s\" % (len(dfAll), len(df_actual)))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"%%time\n",
|
||
|
"# filter out all gestures, where the revert button was pressed during the study and the gestrue was repeated\n",
|
||
|
"def is_max(df):\n",
|
||
|
" df_temp = df.copy(deep=True)\n",
|
||
|
" max_version = df_temp.RepetitionID.max()\n",
|
||
|
" df_temp[\"IsMax\"] = np.where(df_temp.RepetitionID == max_version, True, False)\n",
|
||
|
" df_temp[\"MaxRepetition\"] = [max_version] * len(df_temp)\n",
|
||
|
" return df_temp\n",
|
||
|
"\n",
|
||
|
"df_filtered = df_actual.copy(deep=True)\n",
|
||
|
"df_grp = df_filtered.groupby([df_filtered.userID, df_filtered.TaskID, df_filtered.VersionID])\n",
|
||
|
"pool = Pool(cpu_count() - 1)\n",
|
||
|
"result_lst = pool.map(is_max, [grp for name, grp in df_grp])\n",
|
||
|
"df_filtered = pd.concat(result_lst)\n",
|
||
|
"df_filtered = df_filtered[df_filtered.IsMax == True]\n",
|
||
|
"pool.close()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"df_filtered.to_pickle(\"DataStudyCollection/df_lstm.pkl\")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"print(\"actual: %s, filtered data: %s\" % (len(df_actual), len(df_filtered)))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.6.7"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|